Synthesis of Biomorphic Ceria Templated from Crucian Fish Scales

Article Preview

Abstract:

Biomophic ceria with nanocrystalline was successfully synthesized using crucian fish scales as template. Unique biomorphic microstructures were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and nitrogen absorption-desorption technique. The obtained ceria material shows the repetitious biomimetic structure consisting of sheet with thickness of ca. 80-100 nm and nanopores which had 2-10 nm apertures. The surface oxygen activity of fish scale-templated CeO2 was enhanced revealed by hydrogen temperature-programmed reduction (H2-TPR) mesurements, because of the higher surface area (113.5 m2/g) and smaller particle size (average of 8.2 nm). Those detailed investigation could infer that the biotemplate product exhibit better catalytic activity in CO oxidation reaction.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1353-1357

Citation:

Online since:

July 2013

Export:

Price:

[1] G. Panzera, V. Modafferi, S. Candamano, et al, CO selective oxidation on ceria-supported Au catalysts for fuel cell application, J. Power Sources 135 (2004) 177-183.

DOI: 10.1016/j.jpowsour.2004.04.006

Google Scholar

[2] S. B. Khan, M. Faisal, M. M. Rahman, ea al, Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications, Sci. Total Environ. 409 (2011) 2987-2992.

DOI: 10.1016/j.scitotenv.2011.04.019

Google Scholar

[3] R. Yu, L. Yan, P. Zheng, et al, Controlled Synthesis of CeO2 Flower-Like and Well-Aligned Nanorod Hierarchical Architectures by a Phosphate-Assisted Hydrothermal Route, J. Phys. Chem. C 112 (2008) 19896-19900.

DOI: 10.1021/jp806092q

Google Scholar

[4] M. Das, S. Patil, N. Bhargava, et al, Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons, Biomater. 28 (2007) 1918-1925.

DOI: 10.1016/j.biomaterials.2006.11.036

Google Scholar

[5] S. Hosokawa, K. Shimamura, M. Inoue, Solvothermal synthesis of ceria nanoparticles with large surface areas, Mater. Res. Bull. 46 (2011) 1928-1932.

DOI: 10.1016/j.materresbull.2011.07.025

Google Scholar

[6] Y. Zhiqiang, K. Zhou, X. Liu, et al, Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property, Nanotech. 18 (2007) 185606.

DOI: 10.1088/0957-4484/18/18/185606

Google Scholar

[7] F. Dang, K. Kato, H. Imai, et al, Characteristics of Multilayered Nanostructures of CeO2 Nanocrystals Self-Assembled on an Enlarged Liquid–Gas Interface, Cryst. Growth Des. 11 (2011) 4129-4134.

DOI: 10.1021/cg200696g

Google Scholar

[8] D. F. Williams. On the nature of biomaterials, Biomater. 30 (2009) 5897-5909.

Google Scholar

[9] T. X. Fan, S. K. Chow, D. Zhang, Biomorphic mineralization: From biology to materials, Prog. Mater. Sci. 54 (2009) 542-659.

Google Scholar

[10] S. Sotiropoulou, Y Sierra-Sastre, S. S. Mark, et al, Biotemplated Nanostructured Materials, Chem. Mater. 20 (2008) 821-834.

DOI: 10.1021/cm702152a

Google Scholar

[11] B. Bai, P. Wang, L. Wu, et al, A novel yeast bio-template route to synthesize Cr2O3 hollow microspheres, Mater. Chem. Phys. 114 (2009) 26-29.

DOI: 10.1016/j.matchemphys.2008.10.030

Google Scholar

[12] C. R. Rambo, J. Cao, H. Sieber, Preparation and properties of highly porous, biomorphic YSZ ceramics, Mater. Chem. Phys. 87 (2004) 345-352.

DOI: 10.1016/j.matchemphys.2004.05.031

Google Scholar

[13] H.-W. Shim, Y. H. Jin, S. D. Seo, et al, Highly Reversible Lithium Storage in Bacillus subtilis-Directed Porous Co3O4 Nanostructures, ACS Nano 5 (2010) 443-449.

DOI: 10.1021/nn1021605

Google Scholar

[14] M. Pérez-Cabero, V. Puchol, D Beltrán, et al, Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material, Carbon 46 (2008) 297-304.

DOI: 10.1016/j.carbon.2007.11.017

Google Scholar

[15] G. Kostovski, D. J. White, A. Mitchell, et al, Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing, Biosens. Bioelectro. 24 (2009) 1531-1535.

DOI: 10.1016/j.bios.2008.10.016

Google Scholar

[16] L. Jabbour, M. Destro, C. Gerbaldi, et al, Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries, J. Mater. Chem. 22 (2012) 3227-3233.

DOI: 10.1039/c2jm15117k

Google Scholar

[17] Q. Huang, X. Xue, R. Zhou. Influence of interaction between CeO2 and USY on the catalytic performance of CeO2–USY catalysts for deep oxidation of 1,2-dichloroethane, J. Mol. Catal. A: Chem. 331 (2010) 130-136.

DOI: 10.1016/j.molcata.2010.08.017

Google Scholar

[18] J. M. Zhou, L. Zhao, Q. Q. Huang, et al, Catalytic Activity of Y Zeolite Supported CeO2 Catalysts for Deep Oxidation of 1, 2-Dichloroethane (DCE), Catal. Lett. 127 (2009) 277-284.

DOI: 10.1007/s10562-008-9672-5

Google Scholar

[19] I. Atribak, A. Bueno-López, A. García-García, Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides, J. Catal. 259 (2008) 123-132.

DOI: 10.1016/j.jcat.2008.07.016

Google Scholar

[20] F. Giordano, A. Trovarelli, C. de Leitenburg, M. Giona, A Model for the temperature-programmed reduction of low and high surface area ceria, J. Catal. 193 (2000) 273-282.

DOI: 10.1006/jcat.2000.2900

Google Scholar

[21] L. A. Bruce, M. Hoang, A. E. Hughes, T. W.Turney, Surface area control during the synthesis and reduction of high area ceria catalyst supports, Appl. Catal. A: Gen. 134 (1996) 351-362.

DOI: 10.1016/0926-860x(95)00217-0

Google Scholar