Development of an Inverse Routine to Predict Residual Stresses in the Material Based on a Bending Test

Article Preview

Abstract:

Bending with unloading and reverse bending are the dominant material deformations in roll forming and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of the roll forming process. Recent investigations have shown that residual stresses affect the material behaviour close to the yield in a bending test. So, Residual stress introduced during prior steel processing may affect the roll forming process and therefore needs to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is expensive, difficult, time consuming and has limited accuracy. Analytical models are available that allow the determination of residual stress. However, for this detailed information about the pre-processing conditions is required; this information is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that generates a residual stress profile through the thickness of the material based on pure bend test data.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

949-956

Citation:

Online since:

June 2013

Export:

Price:

[1] H. Kijima, N. Bay, Skin-pass rolling I - Studies on roughness transfer and elongation under pure normal loading, Int J Mach Tool Manu, 48 (2008) 1313-1317.

DOI: 10.1016/j.ijmachtools.2008.06.005

Google Scholar

[2] G. Mücke, Pütz, P.D, Gorgels, F., Methods of Describing, Assessing, and Influencing Shape Deviations in Strips, in: Flat-rolled steel processes: advanced technologies, CRC, 2009, pp.287-298.

DOI: 10.1201/9781420072938-c27

Google Scholar

[3] B. Hundy, Determination of residual stresses in lightly rolled thin strip, J. Iron Steel Inst, 179 (1955) 23-29.

Google Scholar

[4] E. Silvestre, J. Mendiguren, E.S. de Argandoña, L. Galdos, Roll levelling numerical simulation using a nonlinear mixed hardening material model, in: 14th International Metal Forming Conference, Krakow, Poland, 2012, pp.1295-1298.

DOI: 10.1088/1742-6596/896/1/012122

Google Scholar

[5] M. Weiss, W. Ryan, B. Rolfe, C.H. Yang, The effect of skin passing on the material behavior of metal strip in pure bending and tension, Numiform 2010, Vols 1 and 2, 1252 (2010) 896-902.

DOI: 10.1063/1.3457651

Google Scholar

[6] E.J. Hoggan, R.I. Scott, M.R. Barnett, P.D. Hodgson, Mechanical properties of tension levelled and skin passed steels, Journal of Materials Processing Technology, 125 (2002) 155-163.

DOI: 10.1016/s0924-0136(02)00368-0

Google Scholar

[7] J. Marnette, B. Rolfe, P. Hodgson, M. Weiss, Effect of Roller Leveling on the Bending Behaviour of Aged Steel Strip, in: 14th International Metal Forming Conference, Krakow, Poland, 2012, pp.699-702.

DOI: 10.1063/1.4850011

Google Scholar

[8] M. Weiss, B. Rolfe, P.D. Hodgson, C. Yang, Effect of residual stress on the bending of aluminium, Journal of Materials Processing Technology, 212 (2012) 877-883.

DOI: 10.1016/j.jmatprotec.2011.11.008

Google Scholar

[9] R. Henning, A. Sedlmaier, H. Wolfkamp, B. Rolfe, M. Weiss, Understanding the shape defects in roll forming using a novel material characterising method, in: Symposium of Plasticity, Puerto Vallarta, Mexico, 2011.

Google Scholar

[10] J. Paralikas, K. Salonitis, G. Chryssolouris, Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS, International Journal of Advanced Manufacturing Technology, 44 (2009) 223-237.

DOI: 10.1007/s00170-008-1822-9

Google Scholar

[11] J. Larrañaga, L. Galdos, L. Uncilla, A. Etxaleku, Development and validation of a numerical model for sheet metal roll forming, International Journal of Material Forming, 3 (2010) 151-154.

DOI: 10.1007/s12289-010-0729-9

Google Scholar

[12] J. Paralikas, K. Salonitis, G. Chryssolouris, Optimization of roll forming process parameters-a semi-empirical approach, International Journal of Advanced Manufacturing Technology, 47 (2010) 1041-1052.

DOI: 10.1007/s00170-009-2252-z

Google Scholar

[13] M.O. Gortan, D. Vucic, P. Groche, H. Livatyali, Roll forming of branched profiles, Journal of Materials Processing Technology, 209 (2009) 5837-5844.

DOI: 10.1016/j.jmatprotec.2009.07.004

Google Scholar

[14] A. Abvabi, B. Rolfe, J. Larrañaga, L. Galdos, C. Yang, M. Weiss, Using the Solid-shell Element to Model the Roll Forming of Large Radii Profiles, in: 14th International Metal Forming Conference, Krakow, Poland, 2012, pp.711-714.

Google Scholar

[15] R.J.A. De Sousa, J.W. Yoon, R.P.R. Cardoso, R.A.F. Valente, J.J. Gracio, On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations, Int J Plasticity, 23 (2007) 490-515.

DOI: 10.1016/j.ijplas.2006.06.004

Google Scholar

[16] Y.F. Kudryavtsev, Residual stress, in: Springer handbook of experimental solid mechanics, Springer, Heidelberg, 2008, pp.371-385.

DOI: 10.1007/978-0-387-30877-7_15

Google Scholar

[17] P.W. Key, G.J. Hancock, A Theoretical Investigation of the Column Behavior of Cold-Formed Square Hollow Sections, Thin-Walled Structures, 16 (1993) 31-64.

DOI: 10.1016/0263-8231(93)90040-h

Google Scholar

[18] C.C. Weng, R.N. White, Residual-Stresses in Cold-Bent Thick Steel Plates, J Struct Eng-Asce, 116 (1990) 24-39.

DOI: 10.1061/(asce)0733-9445(1990)116:1(24)

Google Scholar

[19] W.M. Quach, J.G. Teng, K.F. Chung, Residual stresses in steel sheets due to coiling and uncoiling: a closed-form analytical solution, Eng Struct, 26 (2004) 1249-1259.

DOI: 10.1016/j.engstruct.2004.04.005

Google Scholar

[20] W.M. Quach, J.G. Teng, K.F. Chung, Finite element predictions of residual stresses in press-braked thin-walled steel sections, Eng Struct, 28 (2006) 1609-1619.

DOI: 10.1016/j.engstruct.2006.02.013

Google Scholar

[21] M. Weiss, H. Wolfkamp, B. Rolfe, P.D. Hodgson, E. Hemmerich, Measerment of Bending Properties in Strip for Rll Forming, in: International Deep Drawing Research Group (IDDRG 2009) Golden, CO, USA, 2009, pp.521-532.

Google Scholar

[22] MSC.Marc, Volume B: Element Library, MSC.Software Corporation, USA, 2010.

Google Scholar

[23] R.I. Scott, The Influence of Thermal and Mechanical Treatments on the Roll Forming Characteristics of High Strength Recovery Annealed Steel, in, Deakin University, 2003.

Google Scholar

[24] M. Weiss, B. Rolfe, P.D. Hodgson, Comparison of bending and tensile properties for automotive grade strip steel, in: International Deep Drawing Research Group (IDDRG 2010) Graz, Austria 2010, pp.583-592.

Google Scholar

[25] MSC.Marc, Volume D: User Subroutines and Special Routines, MSC.Software Corporation, USA, 2010.

Google Scholar

[26] Red Cedar Technology, Information on http://www.redcedartech.com.

Google Scholar