A Comparative Study between Melt-Derived and Sol-Gel Synthesized 45S5 Bioactive Glasses

Article Preview

Abstract:

In the last years, bioactive glasses and glass-ceramics drew the attention for their application in the production of implants. Among them, Bioglass® 45S5 is the most commonly used in terms of bioactivity, but its sintering behavior and the related glass-ceramics strongly depend on the followed synthesis process. For these reasons, this paper reports a comparison of the properties and the thermal behavior of bioactive 45S5 glasses produced by a conventional melting process starting from suitable solid precursors or an innovative sol-gel procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-30

Citation:

Online since:

February 2013

Export:

Price:

[1] L.L. Hench and J.M. Polak: Science Vol. 295.

Google Scholar

[5557] (2002), p.1014.

Google Scholar

[2] Q. -Z. Chen, Y. Li, L. -Y. Jin, J.M.W. Quinn, P.A. Komesaroff: Acta Biomater. Vol. 6.

Google Scholar

[10] (2010), p.4143.

Google Scholar

[3] Q.Z. Chen, J.L. Xu, L.G. Yu, X.Y. Fang, K.A. Khor: Mater. Sci. Eng. C Vol. 32.

Google Scholar

[3] (2012), p.494.

Google Scholar

[4] J. Chevalier and L. Gremillard: J. Europ. Ceram. Soc. Vol. 29.

Google Scholar

[7] (2009), p.1245.

Google Scholar

[5] L.L. Hench, R.J. Splinter, W.C. Allen and T.K. Greenlee: J. Biomed. Mater. Res. Symp. Vol. 5 (1971), p.117.

Google Scholar

[6] R. Gupta and A. Kumar: Biomed. Mater. Vol. 3 (2008), p.034005.

Google Scholar

[7] L.L. Hench: J. Mater. Sci.: Mater. Med. Vol. 17.

Google Scholar

[11] (2006), p.967.

Google Scholar

[8] L. Lefebvre, L. Gremillard, J. Chevalier, R. Zenati, D. Bernache-Assolant: Acta Biomater. Vol. 4 (2008), p.1894.

DOI: 10.1016/j.actbio.2008.05.019

Google Scholar

[9] R.M. Day: Tissue Eng. Vol. 11[5-6] (2005), p.768.

Google Scholar

[10] R. Xin, Q. Zhang, J. Gao: J. Non-Cryst. Solids Vol. 356[23-24] (2010), p.1180.

Google Scholar

[11] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin: Acta Mater. Vol. 55 (2007), p.3305.

DOI: 10.1016/j.actamat.2007.01.029

Google Scholar

[12] I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, L. Montanaro: J. Mater. Sci. Mater. Med. Vol. 23.

Google Scholar

[8] (2012), p.1849.

Google Scholar

[13] H.A. El Batal, M.A. Azooz, E.M.A. Khalil, A. Soltan Monem, Y.M. Hamdy: Mater. Chem. Phys. Vol. 80 (2003), p.599.

Google Scholar

[14] A. El Ghannam, E. Hamazawy, A. Yehia: J. Biomed. Mater. Res. Vol. 55 (2001), p.387.

Google Scholar

[15] X. Chatzistavrou, T. Zorba, E. Kontonasaki, K. Chrissafis, P. Koidis, K.M. Paraskevopoulos: Phys. Stat. Sol. (a) Vol. 201.

DOI: 10.1002/pssa.200306776

Google Scholar

[5] (2004), p.944.

Google Scholar

[16] R.H. Doremus: Glass science (Wiley, New York 1994), p.48.

Google Scholar

[17] H. Rawson: Inorganic glass forming systems (Academic Press, New York 1967), p.11.

Google Scholar

[18] M. Cerruti and C. Morterra: Langmuir Vol. 20 (2004), p.6382.

Google Scholar

[19] J. Serra, P. González, B. León: J. Non-Cryst. Solids Vol. 355 (2009), p.475.

Google Scholar

[20] R.A. Brooker, S.C. Kohn, J.R. Holloway, P.F. McMillan: Chem. Geol. Vol. 174 (2001), p.241.

Google Scholar

[21] N. Koga, Z. Strnad, J. Sestak, J. Strnad: J. Therm. Anal. Calorim. Vol. 71.

Google Scholar

[3] (2003), p.927.

Google Scholar