Selective Laser Melting of Low-Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of Laser Point Distance

Article Preview

Abstract:

As many complex processing parameters are involved in Selective Laser Melting (SLM), an understanding of the scientific and technical aspects of the production route on the microstructural evolution during SLM process is required in order to obtain parts with near full density and desirable surface finish. Although the effects of the various processing parameters on the density of parts have been well documented, the effect of laser point distance on density and mechanical properties of the SLM-produced parts has not been widely studied. In this paper, we present the results of using SLM to produce biomedical beta Ti-24Nb-4Zr-8Sn components. Both the density and hardness of the material increases with increasing incident laser energy and reaches a near full density value of >99% without any post-processing. When the laser energy density input is high enough to fully melt powder, the laser point distance has no influence on the density or hardness of the samples. In contrast, at low energy densities, large point distances have been shown to be detrimental.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-233

Citation:

Online since:

August 2012

Export:

Price:

[1] L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scr. Mater. 65 (2011) 21-24.

DOI: 10.1016/j.scriptamat.2011.03.024

Google Scholar

[2] E. Yasa, J. Deckers, J.P. Kruth, The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts, Rapid Prototyping J. 17 (2011) 312-327.

DOI: 10.1108/13552541111156450

Google Scholar

[3] T.B. Sercombe, G.B. Schaffer, Rapid manufacturing of aluminum components, Science 301 (2003) 1225-1227.

DOI: 10.1126/science.1086989

Google Scholar

[4] S. Kumar, Selective laser sintering: A qualitative and objective approach, JOM 55 (2003) 43-47.

DOI: 10.1007/s11837-003-0175-y

Google Scholar

[5] V.J. Challis, A.P. Roberts, J.F. Grotowski, L.C. Zhang, T.B. Sercombe, Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication, Adv. Eng. Mater. 12 (2010) 1106-1110.

DOI: 10.1002/adem.201000154

Google Scholar

[6] A.P. Roberts, G. Grayson, V.J. Challis, L.C. Zhang, J.F. Grotowski, G.B. Schaffer, T.B. Sercombe, Elastic moduli of sintered powders with application to components fabricated using selective laser melting, Acta Mater. 59 (2011) 5257-5265.

DOI: 10.1016/j.actamat.2011.05.002

Google Scholar

[7] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder, J. Mater. Process. Technol. 149 (2004) 616-622.

DOI: 10.1016/j.jmatprotec.2003.11.051

Google Scholar

[8] H.J. Niu, I.T.H. Chang, Instability of scan tracks of selective laser sintering of high speed steel powder, Scr. Mater. 41 (1999) 1229-1234.

DOI: 10.1016/s1359-6462(99)00276-6

Google Scholar

[9] D.D. Gu, Y.F. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, Mater. Des. 30 (2009) 2903-2910.

DOI: 10.1016/j.matdes.2009.01.013

Google Scholar

[10] A.B. Spierings, N. Herres, G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyping J. 17 (2011) 195-202.

DOI: 10.1108/13552541111124770

Google Scholar

[11] A. Simchi, Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features, Mater. Sci. Eng. A 428 (2006) 148-158.

DOI: 10.1016/j.msea.2006.04.117

Google Scholar

[12] J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping J. 11 (2005) 26-36.

DOI: 10.1108/13552540510573365

Google Scholar

[13] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Densification mechanism and microstructural evolution in selective laser sintering of Al-12Si powders, J. Mater. Process. Technol. 211 (2011) 113-121.

DOI: 10.1016/j.jmatprotec.2010.09.003

Google Scholar

[14] R.D. Li, Y.S. Shi, Z.G. Wang, L. Wang, J.H. Liu, W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci. 256 (2010) 4350-4356.

DOI: 10.1016/j.apsusc.2010.02.030

Google Scholar

[15] M. Niinomi, Recent metallic materials for biomedical applications, Metal. Mater. Trans. A 33 (2002) 477-486.

Google Scholar

[16] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Prog. Mater. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[17] Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Phys. Lett. 87 (2005) 091906.

DOI: 10.1063/1.2037192

Google Scholar

[18] S.J. Li, T.C. Cui, Y.L. Hao, R. Yang, Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation, Acta Biomater. 4 (2008) 305-317.

DOI: 10.1016/j.actbio.2007.09.009

Google Scholar

[19] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals Manuf. Tech. 56 (2007) 730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar