Impact Damage Detection in Composite Chiral Sandwich Panels

Article Preview

Abstract:

This paper demonstrates impact damage detection in a composite sandwich panel. The panel is built from a chiral honeycomb and two composite skins. Chiral structures are a subset of auxetic solids exhibiting counterintuitive deformation mechanism and rotative but not reflective symmetry. Damage detection is performed using nonlinear acoustics,involves combined vibro-acoustic interaction of high-frequency ultrasonic wave and low-frequency vibration excitation. High-and low-frequency excitations are introduced to the panel using a low-profile piezoceramic transducer and an electromagnetic shaker, respectively. Vibro-acoustic modulated responses are measured using laser vibrometry. The methods used for impact damage detection clearly reveal de-bonding in the composite panel. The high-frequency weak ultrasonic wave is also modulated by the low-frequency strong vibration wave when nonlinear acoustics is used for damage detection. As a result frequency sidebands can be observed around the main acoustic harmonic in the spectrum of the ultrasonic signal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-167

Citation:

Online since:

July 2012

Export:

Price:

[1] M. Gherlone, M. Mattone, C. Surace, A. Tassotti, A. Tessler. Novel vibration-based methods for detecting delamination damage in composite plate and shell laminates. Key Engineering Materials. 2005, Damage Assessment of Structures VI, pp.289-296.

Google Scholar

[2] Scholey, J. J., Wilcox, P. D., Lee, C. K., Friswell, M. I. and Wisnom M. R. Acoustic Emission in Wide Composite Specimens. Advanced Materials Research. 2006, Vols. 13-14, pp.325-332.

DOI: 10.4028/www.scientific.net/amr.13-14.325

Google Scholar

[3] W. J. Staszewski, C. Boller and G. R. Tomlinson. Health Monitoring of Aerospace Structures. Chichester : Wiley, (2004).

Google Scholar

[4] Gros, Xavier E. An eddy current approach to the detection of damage caused by low-energy impacts on carbon fibre reinforced materials. Materials & Design. 1995, Vol. 16, 3, pp.167-173.

DOI: 10.1016/0261-3069(95)00025-9

Google Scholar

[5] L. J Pieczonka, W.J. Staszewski, F. Aymerich, T. Uhl and M. Szwedo. Numerical Simulations for Impact Damage Detection in Composites Using Vibrothermography. Journal: IOP Conference Series: Materials Science and Engineering. 2011, Vol. 10, 1, p. Article 012062.

DOI: 10.1088/1757-899x/10/1/012062

Google Scholar

[6] Lukasz Ambrozinski, Tadeusz Stepinski, Pawel Packo, Tadeusz Uhl. Self-focusing Lamb waves based on the decomposition of the time-reversal operator using time–frequency representation. Mechanical Systems and Signal Processing. 2012, Vol. 27, pp.337-349.

DOI: 10.1016/j.ymssp.2011.09.019

Google Scholar

[7] M. R. Pearson, M. J. Eaton, C. A. Featherston, K. M. Holford and R. Pullin. Impact Damage Detection and Assessment in Composite Panels using Macro Fibre Composites Transducers. Journal of Physics: Conference Series, 9th International Conference on Damage Assessment of Structures. 2011, Vol. 305, pp. doi: 10. 1088/1742-6596/305/1/012049.

DOI: 10.1088/1742-6596/305/1/012049

Google Scholar

[8] W J Cantwell, J Morton. The significance of damage and defects and their detection in composite materials: A review. The Journal of Strain Analysis for Engineering Design. 1992, Vol. 27, 1, pp.29-42.

DOI: 10.1243/03093247v271029

Google Scholar

[9] Ch. R. Farrar, K. Worden, M. D. Todd, G. Park, J. Nichols, D. E. Adams, M. T. Bement, K. Farinhol. Nonlinear System Identification for Damage Ddetection. s. l. : Los Alamos National Labolatory, (2007).

DOI: 10.2172/922532

Google Scholar

[10] Iwaniec, J. Selected Issues of Exploitational Identification of Nonlinear Systems. Kraków : AGH University of Science and Technology Press, (2011).

Google Scholar

[11] F. Aymerich, W.J. Staszewski. Experimental Study of Impact-Damage Detection in Composite Laminates using a Cross-Modulation Vibro-Acoustic Technique. Structural Health Monitoring. 2010, Vol. 9, 6, pp.541-553.

DOI: 10.1177/1475921710365433

Google Scholar

[12] Meo M, Zumpano G. Nonlinear elastic wave spectroscopy identification of impact damage on a sandwich plate. Composite Structures. 2005, 71, pp.469-474.

DOI: 10.1016/j.compstruct.2005.09.027

Google Scholar

[13] Lakes, D. Prall and R. Properties of a chiral honeycomb with a Poisson's ratio -1. Int. J. Mech. Sci. 1996, Vol. 39, pp.305-310.

Google Scholar

[14] Evans, I. G. Masters and K. E. Models for the elastic deformations of honeycombs. Composite Structures. 1996, Vol. 35, pp.403-422.

DOI: 10.1016/s0263-8223(96)00054-2

Google Scholar

[15] F. Scarpa, F. C. Smith, G. Burriesci and G. Chambers. Mechanical and electromagnetic behaviour of auxetic honeycomb structures. Aeronautical Journal. 2003, Vol. 107, 1069, pp.175-183.

DOI: 10.1017/s0001924000013269

Google Scholar

[16] A. Spadoni, M. Ruzzene and F. Scarpa. Global and local linear buckling behaviour of a chiral cellular structure. Physica Status Soldi B. 2003, Vol. 242, 3, p.695.

DOI: 10.1002/pssb.200460387

Google Scholar

[17] F. Scarpa, S. Blain, T. Lew, D. Perrot, M. Ruzzene and. J. R. Yates. Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A. 2007, Vol. 38, 2, pp.280-289.

DOI: 10.1016/j.compositesa.2006.04.007

Google Scholar

[18] P. Lorato, P. Innocenti, F. Scarpa, A. Alderson, K. L. Alderson, K. M. Zied, N. Ravirala, W. Miller, C. W. Smith and K. E. Evans. The transverse elastic properties of chiral honeycombs. Composites Science and Technology. 2010, Vol. 70, 7, p.1057.

DOI: 10.1016/j.compscitech.2009.07.008

Google Scholar

[19] K. F. Tee, A. Spadoni,F. Scarpa. Wave Propagation in Auxetic Tetrachiral Honeycombs. Journal of Vibration and Acoustics. 2010, Vol. 132, 3, p. doi: 10. 1115/1. 4000785.

DOI: 10.1115/1.4000785

Google Scholar

[20] Paolo Bettini Alessandro Airoldi, Giuseppe Sala, Luca Di Landro, Massimo Ruzzene, Alessandro Spadoni. Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process. Composites: Part B. 2010, Tom 41, 2, strony 133-147.

DOI: 10.1016/j.compositesb.2009.10.005

Google Scholar

[21] Beshers, K. R. Thumma and D. N. Damping and acoustic harmonics in cracked laminated composites. METALLURGICAL AND MATERIALS TRANSACTIONS A. 1995, Vol. 26, 11, pp.2825-2831.

DOI: 10.1007/bf02669641

Google Scholar

[22] A Klepka, W J Staszewski, R B Jenal, M Szwedo, T Uhl, J Iwaniec. Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring. 2011, Vol. 25, p. doi: 10. 1177/1475921711414236.

DOI: 10.1177/1475921711414236

Google Scholar