Design of Hierarchically Porous Materials for Bone Tissue Regeneration

Article Preview

Abstract:

Mesoporous materials synthesized using a polymer templating route have attracted considerable attention in the field of bone tissue regeneration because their unique pore textural properties (high specific surface area, pore volume and controllable mesopore structure) can promote rapid bone formation. In addition, their potential use as a drug delivery system has been highlighted. The scaffolds in bone tissue regeneration should contain 3D interconnected pores ranging in size from 10 to 1000 μm for successful cell migration, nutrient delivery, bone in-growth and vascularization. Meso-sized pores are too small to carry out these roles, even though mesoporous materials have attractive functionalities for bone tissue regeneration. Therefore, a technique linking mesoporous materials with the general scaffolds is required. This paper reviews recent studies relating the development of new porous scaffolds containing mesopores for using in bone tissue regeneration. All the suggested methods, such as a combination of polymer templating methods and rapid prototyping technique can provide hierarchically 3D porous bioactive scaffolds with well interconnected pore structures in the nano to macro size range, good molding capability, biocompatibility, and bioactivity. The new fabrication techniques suggested can potentially be used to design ideal scaffolds in bone tissue regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-153

Citation:

Online since:

June 2010

Authors:

Export:

Price:

[1] S. J. Hollister: Nature Materials, Vol. 4 (2005), p.518.

Google Scholar

[2] M. M. Stevens: Materialstoday, Vol. 11 (2008), p.18.

Google Scholar

[3] D. W. Hutmacher: Biomaterials, Vol. 21 (2000), p.2529.

Google Scholar

[4] V. Karageorgiou, D. Kaplan: Biomaterials, Vol. 26 (2005), p.5474.

Google Scholar

[5] K. Rezwan, Q. Z. Chen, J. J. Blaker, A. R. Boccaccini: Biomaterials, Vol. 27 (2006), p.3413.

Google Scholar

[6] N. D. Evans, E. Gentleman, J. M. Polak, Materialstoday, Vol. 9 (2006), p.26 Figure 11. Optical images of the as-synthesized (A) and calcined (B) BG scaffolds and their FE-SEM (C) and TEM (D) images.

Google Scholar

[7] J. R. Jones, P. D. Lee, L. L. Hench: Philosophical Transactions of the Royal Society A, Vol. 364 (2006), p.263.

Google Scholar

[8] M. M. Stevens, J. H. George: Science, Vol. 310 (2005), p.1135.

Google Scholar

[9] A. R. Boccaccini, V. Maquet: Composites Science and Technology, Vol. 63 (2003), p.2417.

Google Scholar

[10] W. J. E. M. Habraken, J. G. C. Wolke, J. A. Jansen: Advanced Drug Delivery Reviews, Vol. 59 (2007), p.234.

Google Scholar

[11] M. P. Ginebra, T. Traykova, J. A. Planell: Journal of Controlled Release, Vol. 113 (2006), p.102.

Google Scholar

[12] J. R. Jones, L. M. Ehrenfried, L. L. Hench: Biomaterials, Vol. 27 (2006), p.964.

Google Scholar

[13] C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, R. Canuto: Acta Biomaterialia, Vol. 3 (2007), p.199.

DOI: 10.1016/j.actbio.2006.07.012

Google Scholar

[14] S. N. Park, J. C. Park, H. O. Kim, M. J. Song, H. Suh: Biomaterials, Vol. 23 (2002), p.1205.

Google Scholar

[15] J. A. Burdick, R. F. Padera, J. V. Huang, K. S. Anseth: Biomaterials, Vol. 24 (2003), p.1613.

Google Scholar

[16] M. A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget, P. Layrolle: Biomaterials, Vol. 29 (2008), p.2608.

DOI: 10.1016/j.biomaterials.2008.02.021

Google Scholar

[17] J. van den Dolder, E. Farber, P. H. Spauwen, J. A. Jansen: Biomaterials, Vol. 24 (2003), p.1745.

Google Scholar

[18] R. K. Roeder, G. L. Converse, R. J. Kane, W. Yue: JOM, (2008), p.38.

Google Scholar

[19] S. J. Kalita, S. Bose, H. L. Hosick, A. Bandyopadhyay: Materials Science and Engineering C, Vol. 23 (2003), p.611.

Google Scholar

[20] H. R. Lin, C. J. Kuo, C. Y. Yang, S. Y. Shaw, Y. J. Wu: Journal of Biomedical Materials Research B, Vol. 63 (2002), 271.

Google Scholar

[21] Y. S. Nam, J. J. Yoon, T. G. Park: Journal of Biomedical Materials Research B, Vol. 53 (2000), p.1.

Google Scholar

[22] R. Murugan, S. Ramakrishna: Tissue engineering, Vol. 12 (2006), p.435.

Google Scholar

[23] F. J. Hua, G. E. Kim, J. D. Lee, Y. K. Son, D. S. Lee: Journal of Biomedical Materials Research B, Vol. 63 (2002), 161.

Google Scholar

[24] S. H. Oh, S. G. Kang, E, S, Kim, S. H. Cho, J. H. Lee: Biomaterials, Vol. 24 (2003), p.4011.

Google Scholar

[25] K. Whang, C. H. Thomas, K. E. healy: Polymer, Vol. 36 (1995). p.837.

Google Scholar

[26] A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, J. P. Vacanti: Polymer, Vol. 35 (1994), p.1068.

DOI: 10.1016/0032-3861(94)90953-9

Google Scholar

[27] S. M. Peltola, F. P. W. Melchels, D. W. Grijpma, M. Kellomäki: Annals of Medicine, Vol. 40 (2008), p.268.

Google Scholar

[28] I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí: Journal of Nanomaterials, (2008), p.1.

Google Scholar

[29] A. Stein: Advanced Materials, Vol. 15 (2003), p.765.

Google Scholar

[30] M. Hartmann: Chemistry of Materials, Vol. 17 (2005), p.4577.

Google Scholar

[31] M. Vallet-Regí: Chemistry- A European Journal, Vol. 12 (2006), p.5934.

Google Scholar

[32] S. Wang: Microporous and Mesoporous Materials, Vol. 117 (2009), p.1.

Google Scholar

[33] P. Horcajada, A. Ránukam K. Boulahya, J. González-Calbet, M. Vallet-Regí: Solid State Science, Vol. 6 (2004), p.1295.

DOI: 10.1016/j.solidstatesciences.2004.07.026

Google Scholar

[34] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao: Angewante Chemie-International Edition, Vol. 43 (2004), p.5980.

Google Scholar

[35] X. X. Yan, H. X. Deng, X. H. Huang, G. Q. Lu, S. Z. Quio, D. Y. Zhao, C. Z. Yu: Journal of Non-Crystalline Solid, Vol. 351 (2005), p.3209.

Google Scholar

[36] X. Yan, X. Huang, C. Yu, H. Deng, Y. Wang, Z. Zhang, S. Qiao, G. Lu, D. Zhao: Biomaterials, Vol. 27 (2006), p.3396.

Google Scholar

[37] A. López-Noriega, D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, M. Vallet-Regi: Chemistry of Materials, Vol. 18 (2006) p.3137.

DOI: 10.1021/cm060488o

Google Scholar

[38] I. Izquierdo-Barba, D. Arcos, Y. Sakamoto, O. Terasaki, A. López-Noriega, M. Vallet-Regí: Chemistry of Materials, Vol. 20 (2008) 3191.

DOI: 10.1021/cm800172x

Google Scholar

[39] D. Arcos, A. López-Noriega, E. Ruiz-hernández, O. Terasaki, M. Vallet-Regí: Chemistry of Materials, Vol. 21 (2009), p.1000.

DOI: 10.1021/cm801649z

Google Scholar

[40] Q. Shi, J. Wang, J. Jhang, J. Fan, G. D. Stucky, Advanced Materials, Vol. 18 (2006), p.1038.

Google Scholar

[41] T. A. Ostomel, Q. Shi, C. K. Tsung, H. Liang, G. D. Stucky, Small, Vol. 2 (2006), p.1261.

Google Scholar

[42] W. Xia, J. Chang: Journal of Controlled Release, Vol. 110 (2006), p.522.

Google Scholar

[43] H. S. Yun, S. E. Kim, Y. T. Hyun: Materials Letter, Vol. 61 (2007), p.4569.

Google Scholar

[44] H. S. Yun, S. E. Kim, Y. T. Hyun: Solid State Science, Vol. 10 (2008), p.1083.

Google Scholar

[45] H. S. Yun, S. E. Kim, Y. T. Hyun: Chemical Communications, (2007), p.2139.

Google Scholar

[46] H. S. Yun, S. E. Kim, Y. T. Hyun, S. J. Heo, J. W. Shin: Chemistry of Materials, Vol. 19 (2007), p.6363.

Google Scholar

[47] H. S. Yun, S. E. Kim, Y. T. Hyun, S. J. Heo, J. W. Shin: Journal of Biomedical Materials Research B, Vol. 87B (2008), p.374.

Google Scholar

[48] H. S. Yun, S. E. Kim, Y. T. Hyun: Key Engineering Materials, Vol. 361-363 (2008), p.285.

Google Scholar

[49] H. S. Yun, J. J. Yoon, E. K. Park, S. E. Kim, Y. T. Hyun: Journal of Korean Ceramic Society, Vol. 45 (2008), p.631.

Google Scholar

[50] H. S. Yun, S. E. Kim, Y. T. Hyun: Materials Chemistry and Physics, Vol. 115 (2009), p.670.

Google Scholar

[51] H. S. Yun, S. E. Kim, Y. T. Hyun: submitted to Materials Chemistry and Physics (2009).

Google Scholar

[52] X. Li, X. Wang, H. Chen, P. Jiang, X. Dong, J. Shi: Chemistry of Materials, Vol. 19 (2007), p.4322.

Google Scholar

[53] X. Li, J. Shi, X. Dong, L. Zhang, H, Zeng: Journal of Biomedical Materials Research A, Vol. 84 (2008). p.84.

Google Scholar

[54] X. Li, X. Wang, Z. Hua, J. Shi: Journal of Non-Crystalline solids, Vol. 354 (2008), p.3799.

Google Scholar

[55] X. Li, X. Wang, Z. Hua, J. Shi: Acta Materialia, Vol. 56 (2008), p.3260.

Google Scholar

[56] X. Li, X. Wang, L. Zhang, H. Chen, J. Shi: Journal of Biomedical Materials Research B. Vol. 89 (2009), p.148.

Google Scholar

[57] J. Yi, G. Wei, X. Huang, L. Zhao, Q. Zhang, C. Yu: Journal of Sol-Gel Science and Technology, Vol. 45 (2008), p.115.

Google Scholar

[58] L. Zhao, X. Yan, X. Zhao, L. Zhou, H. Wang, J. Tang, C. Yu: Microporous and Mesoporous Materials, Vol. 109 (2008), p.210.

Google Scholar

[59] W. Xia, J. Chang: Journal of Non-Crystalline Solids, Vol. 354 (2008), p.1338.

Google Scholar

[60] W. Xia, J. Chang, J. Lin, J. Zhu: European Journal of Pharmaceutics and Biopharmaceutics, Vol. 69 (2008), p.546.

Google Scholar

[61] Y. Zhu, C. Wu, Y. Ramaswamy, E. Kockrick, P. simon, S. Kaskel, H. Zreiqat, Microporous and Mesoporous Materials, Vol. 112 (2008), p.494.

DOI: 10.1016/j.micromeso.2007.10.029

Google Scholar

[62] C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. howard, H. Zreiqat: Biomaterials, Vol. 30 (2009), p.2199.

Google Scholar

[63] J. Wei, F. Chen, J. W. Shin, H. Hong, C. Dai, J. Su, C. Liu: Biomaterials, Vol. 30 (2009), p.1080.

Google Scholar

[64] Y. Zhu, S. Kaskel: Microporous and Mesoporous Materials, Vol. 118 (2009), p.176.

Google Scholar

[65] Y. Fan, P. Yang, S. Huang, J. Jiang, H. Lian, J. Lin: Journal of Physical Chemistry C, Vol. 113 (2009), p.7826.

Google Scholar

[66] B. Lei, X. Chen, Y, Wang, N. Zhao: Materials Letters, Vol. 63 (2009), p.1719.

Google Scholar

[67] T. Yamagisawa, Z. Shimizu, K. Kuroda: Bulletin of Chemistry Society in Japan, Vol. 63 (1990), p.988.

Google Scholar

[68] C. T. Kresge. M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck: Nature, Vol. 359 (1992), p.710.

Google Scholar

[69] A. Stein, B. J. Melde, R. C. Schroden: Advanced Materials, Vol. 12 (2000), p.1403.

Google Scholar

[70] I. Izquierdo-Barba, L. Ruiz-González, J. C. Doadrio, J. M. González-Calbet, M. Vallet-Regí: Solid State Science, Vol. 7 (2005), p.983.

DOI: 10.1016/j.solidstatesciences.2005.04.003

Google Scholar

[71] L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee: Journal of Biomedical Materials Research, Vol. 2 (1971), p.117.

Google Scholar

[72] L. L. Hench: Journal of America Ceramic Society, Vol. 81 (1998), p.1705.

Google Scholar

[73] M. Vallet-Regí, C. Victoria Ragel, A. J. Salinas: European Journal of Inorganic Chemistry, (2003), p.1029.

Google Scholar

[74] P. Fratzl, R. Weinkamer: Progress in Materials Science, Vol. 52 (2007), p.1263.

Google Scholar

[75] O. Mahony, J. R. Jones: Nanomedicine, Vol. 3 (2008), 233.

Google Scholar

[76] E. Bernardo: Journal of the European Ceramic Society, Vol. 27 (2007), p.2415.

Google Scholar

[77] J. E. Smay, G. M. Gratson, R. F. Shepherd, J. Cesarano III, J. A. Lewis: Advanced Materials, Vol. 14 (2002), p.1279.

DOI: 10.1002/1521-4095(20020916)14:18<1279::aid-adma1279>3.0.co;2-a

Google Scholar

[78] E. N. Antonov, V. N. Bagratashvili, M. J. Whitaker, J. J. A. Barry, K. M. Shakesheff, A. N. Konovalov, V. K. Popov, S. M. Howdle: Advanced Materials, Vol. 17 (2005), p.327.

DOI: 10.1002/adma.200400838

Google Scholar

[79] J. A. Lewis: Advanced Functional Materials, Vol. 16 (2006), p.2193.

Google Scholar

[80] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatobe, A. Funayama, T. Toyama, T. Taguchi, J. Tanaka: Biomaterials, Vol. 26 (2005), p.4847.

DOI: 10.1016/j.biomaterials.2005.01.006

Google Scholar