Cutting Edge Preparation by Means of Abrasive Brushing

Article Preview

Abstract:

The need for new cutting tool technologies is driven by the constantly increasing performance of machine tools and the rising market competition. Current research results show that an improved combination of the cutting edge macro- and microgeometry, together with an appropriate substrate and coating, leads to a significant enhancement of cutting tool performance. Furthermore, inappropriate cutting edge microgeometries cause, in addition to the higher production costs, a reduction of the tool life. Hence, it is essential to produce tailored cutting edge microgeometries with high precision and process reliability. This paper presents the influence of brushing process parameters on the size and the form of produced cutting edges of indexable inserts. This leads to a better understanding and higher quality of the cutting edge preparation process by means of abrasive brushes. Furthermore, the process reliability of 5-axes brushing is analyzed. An example of a tool life map presents the significantly enhanced tool performance through cutting edge preparation and its sensitivity towards varying the cutting edge microgeometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

May 2010

Export:

Price:

[1] B. Denkena, M. Reichstein, J. Brodehl, L. de León García: Surface Preparation, coating and wear performance of geometrically defined cutting edges, Proceedings of the 5 th International Conference THe Coatings, in Manufacturing Engineering 5-7 October (2005).

Google Scholar

[2] B. Denkena, J. C. Becker, L. de León-García: Study of the influence of the cutting edge microgeometry on the cutting forces and wear behavior in turning operations, 8th CIRP International Workshop on Modeling Machining Operations, 10-11 May 2005, Chemnitz.

Google Scholar

[3] K. Risse: Einflüsse von Werkzeugdurchmesser und Schneidkantenverrundung beim Bohren mit Wendelbohrern in Stahl, Dr. -Ing. Dissertation RWTH Aachen, (2006).

Google Scholar

[4] J. D. Thiele, S. N. Melkote: Effect of Cutting-Edge Geometry and Workpiece Hardness on Surface Residual Stresses in Finish Hard Turning of AISI 52100 Steel ASME Vol. 122, November (2000).

DOI: 10.1115/imece1999-0743

Google Scholar

[5] B. Denkena, L. de León-García, E. Bassett: Preparation of Designed Cutting Edge Microgeometries by Simultaneous 5-Axes Brushing, Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN) and EUREKA Brokerage Event, 1-3 October 2008, Kallithea of Chalkidiki, Greece, S. 117-123.

Google Scholar

[6] B. Denkena, L. de León, M. Rehe: Prozesssicher verrunden - Bürstkinematik und Borstenverschleiß bei der Schneidkantenpräparation, Werkstatt und Betrieb 10, S. 36-39, (2009).

Google Scholar

[7] R. W. Overholser, R. J. Stango, R. A. Fournelle: Morphology of metal surface generated by nylon/abrasive filament brush, International Journal of Machine Tools & Manufacture 43, (2003).

DOI: 10.1016/s0890-6955(02)00112-8

Google Scholar

[8] L. Chen, R.J. Stango, V. Cariapa: Development of force-control model for edge-deburring with filamentary brush, ASME Journal of Manufacturing Science and Engineering, August (2001).

DOI: 10.1115/imece1997-1102

Google Scholar

[9] B. Roebuck, N. McCormick: Use of Computer Simulation in the Measurement of WC Grain Size, PM World Congress on Hard Materials, (1998).

Google Scholar

[10] P. Pott: Einfluss von Gehalt und Zusammensetzung der Bindephase auf die mechanischen Eigenschaften von ausgewählten Hartmetallen. Dissertation der Technischen Fakultät der Universität Erlangen-Nürnberg, (2000).

DOI: 10.1515/9783112480106-008

Google Scholar