Surface Properties of Superhydrophobic Coatings for Stone Protection

Article Preview

Abstract:

Superhydrophobic films are produced by a simple and low cost method. Silica (SiO2) nanoparticles are dispersed in solutions of Rhodorsil 224, a commercial poly(alkyl siloxane) which is used for the protection of outdoor cultural heritage objects, and the suspensions are sprayed on glass surfaces. It is shown that the siloxane-nanoparticle composite films prepared from dispersions of high particle concentrations (≥ 0.5% w/v) exhibit superydrophobic properties (high static contact angle and small hysteresis) which can be rationalized by the Cassie-Baxter model, according to quantitative measurements obtained by SEM images. Siloxane-nanoparticle films are then deposited (sprayed) on “Opuka”, a fine-grained argillite which was used for the restoration of the castle of Prague. It is shown that the treated stone surfaces exhibit superydrophobic properties, similar to the treated glass surfaces. The efficacy of the superhydrophobic films to protect Opuka is evaluated by performing water contact angle, water capillary absorption, water vapor permeability and colorimetric measurements. It is shown that the use of nanoparticles in the protective coating has a positive effect on the results of the aforementioned tests, except for the colorimetric measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-33

Citation:

Online since:

September 2009

Export:

Price:

[1] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Öner, J. Youngblood and T.J. McCarthy: Langmuir Vol. 15 (1999), p.3395.

Google Scholar

[2] D. Quéré: Physica A Vol. 313 (2002), p.32.

Google Scholar

[3] D. Quéré: Rep. Prog. Phys. Vol. 68 (2005), p.2495.

Google Scholar

[4] H. Yabu, M. Takebayashi, M. Tanaka and M. Shimomura: Langmuir Vol. 21 (2005), p.3235.

Google Scholar

[5] V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, and C. Fotakis: Adv. Mater. Vol 20 (2008), p.4049.

DOI: 10.1002/adma.200800651

Google Scholar

[6] S.R. Coulson, I. Woodward and J.P.S. Badyal: J. Phys. Chem. B Vol. 104 (2000), p.8836.

Google Scholar

[7] A.D. Tserepi, M.E. Vlachopoulou and E. Gogolides: Nanotechnology Vol. 17 (2006), p.3977.

Google Scholar

[8] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu and Y. Chen: Langmuir Vol. 21 (2005), p.8978.

Google Scholar

[9] L. Zhang, Z. Zhou, B. Cheng, J.M. DeSimone and E.T. Samulski: Langmuir Vol. 22 (2006), p.8576.

Google Scholar

[10] N.J. Shirtcliffe, G. Mc Hale, M. Newton and C.C. Perry: Langmuir Vol. 19 (2003), p.5626.

Google Scholar

[11] M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama and A. Takahara: Langmuir Vol. 21 (2005), p.7299.

Google Scholar

[12] B. Mahltig, H. Bottcher: J. Sol-Gel Sci. Technol. Vol. 27 (2003), p.43.

Google Scholar

[13] M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh and G.C. Rutledge: Langmuir Vol. 21 (2005), p.5549.

Google Scholar

[14] J. Zheng, A. He, J. Li, J. Xu and C.C. Han: Polymer Vol. 47 (2006), p.7095.

Google Scholar

[15] C. -T. Hsieh, J. -M. Chen, R. -R. Kuo, T. -S. Lin and C. -F. Wu: Appl. Surf. Sci. Vol. 240 (2005), p.318.

Google Scholar

[16] E. Chibowski, L. Hołysz, K. Terpilowski and M. Jurak: Colloids Surf. A Vol. 291 (2006), p.181.

Google Scholar

[17] M.Y. Yüce, A.L. Demirel and F. Menzel: Langmuir Vol. 21 (2005), p.5073.

Google Scholar

[18] M.Y. Yüce, A.L. Demirel:. Eur. Phys. J. B Vol. 64 (2008), p.493.

Google Scholar

[19] S. Herminghaus: Europhys. Lett. Vol. 52 (2000), p.165.

Google Scholar

[20] P.N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis and C. Panayiotou: Langmuir, Vol. 24 (2008), p.11225.

DOI: 10.1021/la801817e

Google Scholar

[21] A.B.D. Cassie and S. Baxter: Trans. Faraday Soc Vol. 40 (1944), p.546.

Google Scholar

[22] A.B.D. Cassie and S. Baxter: Nature Vol. 3923 (1945), p.21.

Google Scholar

[23] L. Appolonia, V. Fassina, U. Matteoli, A.M. Mecchi, M.P. Nugari, D. Pinna, R. Peruzzi, O. Salvadori, U. Santamaria, A. Scala, and P. Tiano P.: Proceedings of International Colloquium on Methods of Evaluating Products for the Conservation of Porous Building Material in Monument Rome, (1995).

Google Scholar

[24] A. Tsakalof, P. Manoudis, I. Karapanagiotis, I. Chryssoulakis and C. Panayiotou: J. Cult. Her. Vol. 8 (2007), p.69.

Google Scholar

[25] M.D. Murray, B.W. Darvell: J. Phys. D: Appl. Phys. Vol. 23 (1990), p.1150.

Google Scholar

[26] L. D'Arienzo, P. Scarfato and L. Incarnato: J. Cult. Her. Vol. 9 (2008), p.253.

Google Scholar

[27] M. Morra, E. Occhiello and F. Garbassi: Langmuir Vol. 5 (1989), p.872.

Google Scholar

[28] L. Gao and T. J. Mc Carthy: Langmuir Vol. 22 (2006), p.5998.

Google Scholar

[29] L. Gao and T. J. Mc Carthy: J. Am. Chem. Soc. Vol. 128 (2006), p.9052.

Google Scholar

[30] L. Gao and T. J. Mc Carthy: Langmuir Vol. 23 (2007), p.9125.

Google Scholar

[31] A. Athanassiou, M.I. Lygeraki, D. Pisignano, K. Lakiotaki, M. Varda, E. Mele, C. Fotakis, R. Cingolani and S.H. Anastasiadis: Langmuir Vol. 22 (2006), p.2329.

DOI: 10.1021/la052122g

Google Scholar