An Overview of Intervertebral Disc Degeneration Therapies and an Evaluation of the Chondrogenic and Chemotactic Potential of CDMP-2

Article Preview

Abstract:

Intervertebral disc degeneration creates a significant healthcare burden on industrialized Western society. Recent research into treatment options has highlighted numerous biological strategies to replenish the native disc cells with minimal invasion, although their effectiveness and safety are still under intense investigation. This review provides an outline of the key biological therapies under research currently, including stem cells, biomaterial scaffolds and signaling molecules. Particularly, the focus will be on CDMP-2, a signaling molecule that has been found to possess properties that are therapeutic to disc degeneration. The review will assess the evidence of the molecule’s chondrogenic and chemotactic effects on disc cells and evaluate areas for further research in determining its regenerative potential in the intervertebral disc.

You might also be interested in these eBooks

Info:

Pages:

97-118

Citation:

Online since:

December 2013

Export:

Price:

* - Corresponding Author

[1] Murray, C.J., et al., Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012. 380(9859): pp.2197-223.

Google Scholar

[2] Walker, M.H. and D.G. Anderson, Molecular basis of intervertebral disc degeneration. Spine J, 2004. 4(6 Suppl): p. 158S-166S.

Google Scholar

[3] Chan, S.C. and B. Gantenbein-Ritter, Intervertebral disc regeneration or repair with biomaterials and stem cell therapy--feasible or fiction? Swiss Med Wkly, 2012. 142: p. w13598.

DOI: 10.4414/smw.2012.13598

Google Scholar

[4] Bibby, S.R., et al., The pathophysiology of the intervertebral disc. Joint Bone Spine, 2001. 68(6): pp.537-42.

Google Scholar

[5] Adams, M.A. and P.J. Roughley, What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976), 2006. 31(18): pp.2151-61.

DOI: 10.1097/01.brs.0000231761.73859.2c

Google Scholar

[6] Buckwalter, J.A., Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976), 1995. 20(11): pp.1307-14.

DOI: 10.1097/00007632-199506000-00022

Google Scholar

[7] Urban, J.P. and S. Roberts, Development and degeneration of the intervertebral discs. Mol Med Today, 1995. 1(7): pp.329-35.

Google Scholar

[8] Maroudas, A., et al., Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat, 1975. 120(Pt 1): pp.113-30.

Google Scholar

[9] Raj, P.P., Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract, 2008. 8(1): pp.18-44.

DOI: 10.1111/j.1533-2500.2007.00171.x

Google Scholar

[10] Inoue, N. and A.A. Espinoza Orias, Biomechanics of intervertebral disk degeneration. Orthop Clin North Am, 2011. 42(4): pp.487-99, vii.

Google Scholar

[11] COVENTRY, M.B., R.K. GHORMLEY, and J.W. KERNOHAN, THE INTERVERTEBRAL DISC: ITS MICROSCOPIC ANATOMY AND PATHOLOGY Part II. Changes in the Intervertebral Disc Concomitant with Age. The Journal of Bone and Joint Surgery (American), 1945. 27(2): pp.233-247.

Google Scholar

[12] Nerurkar, N.L., D.M. Elliott, and R.L. Mauck, Mechanical design criteria for intervertebral disc tissue engineering. J Biomech, 2010. 43(6): pp.1017-30.

DOI: 10.1016/j.jbiomech.2009.12.001

Google Scholar

[13] Andersson, G.B., Epidemiological features of chronic low-back pain. Lancet, 1999. 354(9178): pp.581-5.

DOI: 10.1016/s0140-6736(99)01312-4

Google Scholar

[14] Bressler, H.B., et al., The prevalence of low back pain in the elderly. A systematic review of the literature. Spine (Phila Pa 1976), 1999. 24(17): pp.1813-9.

DOI: 10.1097/00007632-199909010-00011

Google Scholar

[15] Hicks, G.E., N. Morone, and D.K. Weiner, Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine (Phila Pa 1976), 2009. 34(12): pp.1301-6.

DOI: 10.1097/brs.0b013e3181a18263

Google Scholar

[16] Williams, F.M. and P.N. Sambrook, Neck and back pain and intervertebral disc degeneration: role of occupational factors. Best Pract Res Clin Rheumatol, 2011. 25(1): pp.69-79.

DOI: 10.1016/j.berh.2011.01.007

Google Scholar

[17] Battie, M.C., T. Videman, and E. Parent, Lumbar disc degeneration: epidemiology and genetic influences. Spine (Phila Pa 1976), 2004. 29(23): pp.2679-90.

DOI: 10.1097/01.brs.0000146457.83240.eb

Google Scholar

[18] Miller, J.A., C. Schmatz, and A.B. Schultz, Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine (Phila Pa 1976), 1988. 13(2): pp.173-8.

DOI: 10.1097/00007632-198802000-00008

Google Scholar

[19] Alini, M., et al., A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J, 2002. 11 Suppl 2: p. S215-20.

DOI: 10.1007/s00586-002-0485-8

Google Scholar

[20] Evans, W., W. Jobe, and C. Seibert, A cross-sectional prevalence study of lumbar disc degeneration in a working population. Spine (Phila Pa 1976), 1989. 14(1): pp.60-4.

DOI: 10.1097/00007632-198901000-00012

Google Scholar

[21] Kara, B., Z. Tulum, and U. Acar, Functional results and the risk factors of reoperations after lumbar disc surgery. Eur Spine J, 2005. 14(1): pp.43-8.

DOI: 10.1007/s00586-004-0695-3

Google Scholar

[22] Manusov, E.G., Surgical treatment of low back pain. Prim Care, 2012. 39(3): pp.525-31.

Google Scholar

[23] Adams, M.A., et al., Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976), 2000. 25(13): pp.1625-36.

Google Scholar

[24] Cassinelli, E.H., R.A. Hall, and J.D. Kang, Biochemistry of intervertebral disc degeneration and the potential for gene therapy applications. Spine J, 2001. 1(3): pp.205-14.

DOI: 10.1016/s1529-9430(01)00021-3

Google Scholar

[25] Le Maitre, C.L., A.J. Freemont, and J.A. Hoyland, The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther, 2005. 7(4): p. R732-45.

DOI: 10.1186/ar2198

Google Scholar

[26] Kang, J.D., et al., Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine (Phila Pa 1976), 1997. 22(10): pp.1065-73.

DOI: 10.1097/00007632-199705150-00003

Google Scholar

[27] Luoma, K., et al., Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976), 2000. 25(4): pp.487-92.

DOI: 10.1097/00007632-200002150-00016

Google Scholar

[28] Peng, B., et al., The pathogenesis of discogenic low back pain. J Bone Joint Surg Br, 2005. 87(1): pp.62-7.

Google Scholar

[29] Morgan, F.P. and T. King, Primary instability of lumbar vertebrae as a common cause of low back pain. J Bone Joint Surg Br, 1957. 39-B(1): pp.6-22.

DOI: 10.1302/0301-620x.39b1.6

Google Scholar

[30] Kalson, N.S., S. Richardson, and J.A. Hoyland, Strategies for regeneration of the intervertebral disc. Regen Med, 2008. 3(5): pp.717-29.

DOI: 10.2217/17460751.3.5.717

Google Scholar

[31] van der Roer, N., et al., What is the most cost-effective treatment for patients with low back pain? A systematic review. Best Pract Res Clin Rheumatol, 2005. 19(4): pp.671-84.

DOI: 10.1016/j.berh.2005.03.007

Google Scholar

[32] Etebar, S. and D.W. Cahill, Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg, 1999. 90(2 Suppl): pp.163-9.

DOI: 10.3171/spi.1999.90.2.0163

Google Scholar

[33] Turner, J.A., L. Herron, and R.A. Deyo, Meta-analysis of the results of lumbar spine fusion. Acta Orthop Scand Suppl, 1993. 251: pp.120-2.

DOI: 10.3109/17453679309160140

Google Scholar

[34] Hoogendoorn RJ, Helder MN, Wuisman PI, Bank RA, Everts VE, Smit TH. Adjacent segment degeneration: observations in a goat spinal fusion study. Spine (Phila Pa 1976). 2008 May20;33(12):1337-43.

DOI: 10.1097/brs.0b013e318173438f

Google Scholar

[35] Beyer Nardi, N. and L. da Silva Meirelles, Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol, 2006(174): pp.249-82.

DOI: 10.1007/3-540-31265-x_11

Google Scholar

[36] Paesold, G., A.G. Nerlich, and N. Boos, Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J, 2007. 16(4): pp.447-68.

DOI: 10.1007/s00586-006-0220-y

Google Scholar

[37] Mason, J.M., et al., Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res, 2000(379 Suppl): p. S171-8.

Google Scholar

[38] Crevensten, G., et al., Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng, 2004. 32(3): pp.430-4.

DOI: 10.1023/b:abme.0000017545.84833.7c

Google Scholar

[39] Sakai, D., et al., Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials, 2003. 24(20): pp.3531-41.

DOI: 10.1016/s0142-9612(03)00222-9

Google Scholar

[40] Richardson, S.M., et al., Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells, 2006. 24(3): pp.707-16.

DOI: 10.1634/stemcells.2005-0205

Google Scholar

[41] Leung, V.Y., D. Chan, and K.M. Cheung, Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J, 2006. 15 Suppl 3: p. S406-13.

DOI: 10.1007/s00586-006-0183-z

Google Scholar

[42] Hunter, C.J., J.R. Matyas, and N.A. Duncan, The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng, 2003. 9(4): pp.667-77.

DOI: 10.1089/107632703768247368

Google Scholar

[43] Yang, X. and X. Li, Nucleus pulposus tissue engineering: a brief review. Eur Spine J, 2009. 18(11): pp.1564-72.

DOI: 10.1007/s00586-009-1092-8

Google Scholar

[44] Clouet, J., et al., The intervertebral disc: from pathophysiology to tissue engineering. Joint Bone Spine, 2009. 76(6): pp.614-8.

DOI: 10.1016/j.jbspin.2009.07.002

Google Scholar

[45] Gloria, A., et al., Rheological characterization of hyaluronic acid derivatives as injectable materials toward nucleus pulposus regeneration. J Biomater Appl, 2012. 26(6): pp.745-59.

DOI: 10.1177/0885328210387174

Google Scholar

[46] Vinatier, C., et al., Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol, 2009. 27(5): pp.307-14.

DOI: 10.1016/j.tibtech.2009.02.005

Google Scholar

[47] Nesti, L.J., et al., Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A, 2008. 14(9): pp.1527-37.

DOI: 10.1089/ten.tea.2008.0215

Google Scholar

[48] Pan, H., et al., A fibroblast/macrophage co-culture model to evaluate the biocompatibility of an electrospun Dextran/PLGA scaffold and its potential to induce inflammatory responses. Biomed Mater, 2011. 6(6): p.065002.

DOI: 10.1088/1748-6041/6/6/065002

Google Scholar

[49] Lotz, A.S., et al., Cytotoxic and genotoxic effects of matrices for cartilage tissue engineering. Toxicol Lett, 2009. 190(2): pp.128-33.

Google Scholar

[50] Pratsinis, H. and D. Kletsas, PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. Eur Spine J, 2007. 16(11): pp.1858-66.

DOI: 10.1007/s00586-007-0408-9

Google Scholar

[51] Lotz, J.C., et al., New treatments and imaging strategies in degenerative disease of the intervertebral disks. Radiology, 2012. 264(1): pp.6-19.

Google Scholar

[52] Gruber, H.E., H.J. Norton, and E.N. Hanley, Jr., Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine (Phila Pa 1976), 2000. 25(17): pp.2153-7.

DOI: 10.1097/00007632-200009010-00002

Google Scholar

[53] Huang, C.Y., F. Travascio, and W.Y. Gu, Quantitative analysis of exogenous IGF-1 administration of intervertebral disc through intradiscal injection. J Biomech, 2012. 45(7): pp.1149-55.

DOI: 10.1016/j.jbiomech.2012.02.005

Google Scholar

[54] Kim, J.S., et al., Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis Rheum, 2010. 62(12): pp.3706-15.

DOI: 10.1002/art.27733

Google Scholar

[55] Akhurst, R.J. and A. Hata, Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov, 2012. 11(10): pp.790-811.

DOI: 10.1038/nrd3810

Google Scholar

[56] Rider, C.C. and B. Mulloy, Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J, 2010. 429(1): pp.1-12.

DOI: 10.1042/bj20100305

Google Scholar

[57] Sigal, L.H., Basic science for the clinician 57: transforming growth factor beta. J Clin Rheumatol, 2012. 18(5): pp.268-72.

Google Scholar

[58] Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003. 113(6): pp.685-700.

DOI: 10.1016/s0092-8674(03)00432-x

Google Scholar

[59] Walsh, A.J., D.S. Bradford, and J.C. Lotz, In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976), 2004. 29(2): pp.156-63.

DOI: 10.1097/01.brs.0000107231.67854.9f

Google Scholar

[60] Zhan, Z., et al., Ad/CMV- hTGF-beta1 treats rabbit intervertebral discs degeneration in vivo. J Huazhong Univ Sci Technolog Med Sci, 2004. 24(6): pp.599-601, 624.

DOI: 10.1007/bf02911367

Google Scholar

[61] Nishida, K., et al., Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine (Phila Pa 1976), 1999. 24(23): pp.2419-25.

DOI: 10.1097/00007632-199912010-00002

Google Scholar

[62] Valdes, M.A., et al., Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Arch Orthop Trauma Surg, 2009. 129(12): pp.1651-7.

DOI: 10.1007/s00402-009-0850-8

Google Scholar

[63] Matthews, S.J., Biological activity of bone morphogenetic proteins (BMP's). Injury, 2005. 36 Suppl 3: p. S34-7.

Google Scholar

[64] Dudley, A.T., K.M. Lyons, and E.J. Robertson, A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev, 1995. 9(22): pp.2795-807.

DOI: 10.1101/gad.9.22.2795

Google Scholar

[65] Chen, C., et al., An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol, 2003. 21(3): pp.294-301.

Google Scholar

[66] Chen, H., et al., BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development, 2004. 131(9): pp.2219-31.

Google Scholar

[67] Li, W., C.A. Cogswell, and J.J. LoTurco, Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci, 1998. 18(21): pp.8853-62.

DOI: 10.1523/jneurosci.18-21-08853.1998

Google Scholar

[68] Zeng, S., J. Chen, and H. Shen, Controlling of bone morphogenetic protein signaling. Cell Signal, 2010. 22(6): pp.888-93.

Google Scholar

[69] Wei, S., et al., Recombinant human BMP-2 for the treatment of open tibial fractures. Orthopedics, 2012. 35(6): p. e847-54.

Google Scholar

[70] Lissenberg-Thunnissen, S.N., et al., Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop, 2011. 35(9): pp.1271-80.

DOI: 10.1007/s00264-011-1301-z

Google Scholar

[71] Bostrom, M.P., et al., Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res, 1995. 13(3): pp.357-67.

Google Scholar

[72] Reddi, A.H., Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am, 2001. 83-A Suppl 1(Pt 1): p. S1-6.

DOI: 10.2106/00004623-200100001-00001

Google Scholar

[73] Kim, H., et al., Zonal responsiveness of the human intervertebral disc to bone morphogenetic protein-2. Spine (Phila Pa 1976), 2009. 34(17): pp.1834-8.

Google Scholar

[74] Kim, D.J., et al., Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine (Phila Pa 1976), 2003. 28(24): pp.2679-84.

DOI: 10.1097/01.brs.0000101445.46487.16

Google Scholar

[75] Li, J., S.T. Yoon, and W.C. Hutton, Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech, 2004. 17(5): pp.423-8.

DOI: 10.1097/01.bsd.0000112084.85112.5d

Google Scholar

[76] Chubinskaya, S., M. Hurtig, and D.C. Rueger, OP-1/BMP-7 in cartilage repair. Int Orthop, 2007. 31(6): pp.773-81.

DOI: 10.1007/s00264-007-0423-9

Google Scholar

[77] Masuda, K., et al., Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res, 2003. 21(5): pp.922-30.

DOI: 10.1016/s0736-0266(03)00037-8

Google Scholar

[78] An, H.S., et al., Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976), 2005. 30(1): pp.25-31; discussion 31-2.

DOI: 10.1097/01.brs.0000148002.68656.4d

Google Scholar

[79] Kawakami, M., et al., Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine (Phila Pa 1976), 2005. 30(17): pp.1933-9.

DOI: 10.1097/01.brs.0000176319.78887.64

Google Scholar

[80] Chubinskaya, S., et al., Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res, 2007. 25(4): pp.517-30.

DOI: 10.1002/jor.20339

Google Scholar

[81] Chang, S.C., et al., Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem, 1994. 269(45): pp.28227-34.

DOI: 10.1016/s0021-9258(18)46918-9

Google Scholar

[82] Bobacz, K., et al., Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis. Osteoarthritis Cartilage, 2002. 10(5): pp.394-401.

DOI: 10.1053/joca.2002.0522

Google Scholar

[83] Erlacher, L., et al., Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum, 1998. 41(2): pp.263-73.

DOI: 10.1002/1529-0131(199802)41:2<263::aid-art10>3.0.co;2-5

Google Scholar

[84] Le Maitre, C.L., A.J. Freemont, and J.A. Hoyland, Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther, 2009. 11(5): p. R137.

DOI: 10.1186/ar2808

Google Scholar

[85] Wang, H., et al., Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells. J Mol Med (Berl), 2004. 82(2): pp.126-34.

DOI: 10.1016/s1525-0016(16)40970-6

Google Scholar

[86] Bai, X., et al., Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem Biophys Res Commun, 2004. 325(2): pp.453-60.

DOI: 10.1016/j.bbrc.2004.10.055

Google Scholar

[87] Chujo, T., et al., Effects of growth differentiation factor-5 on the intervertebral disc--in vitro bovine study and in vivo rabbit disc degeneration model study. Spine (Phila Pa 1976), 2006. 31(25): pp.2909-17.

DOI: 10.1097/01.brs.0000248428.22823.86

Google Scholar

[88] Rathmell, J.G., R.; Tark, M.; Youssef, J.; Harden, N.; Borden, J.; & Gu, Y., Intradiscal rhGDF-5 Phase I/II Clinical Trial, in DePuy Spine2013: United States.

Google Scholar

[89] Nochi, H., et al., Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res, 2004. 19(1): pp.111-22.

DOI: 10.1359/jbmr.2004.19.1.111

Google Scholar

[90] Tian, H., et al., Chondrogenic differentiation of mouse bone marrow mesenchymal stem cells induced by cartilage-derived morphogenetic protein-2 in vitro. J Huazhong Univ Sci Technolog Med Sci, 2007. 27(4): pp.429-32.

DOI: 10.1007/s11596-007-0420-7

Google Scholar

[91] Zhang, Y., et al., Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells. Spine (Phila Pa 1976), 2006. 31(19): pp.2173-9.

DOI: 10.1097/01.brs.0000232792.66632.d8

Google Scholar

[92] Chai, W., et al., Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells. Chin Med J (Engl), 2013. 126(8): pp.1509-16.

Google Scholar

[93] Dorman, L.J., M. Tucci, and H. Benghuzzi, In vitro effects of bmp-2, bmp-7, and bmp-13 on proliferation and differentation of mouse mesenchymal stem cells. Biomed Sci Instrum, 2012. 48: pp.81-7.

Google Scholar

[94] Li, J., et al., BMP-2 and CDMP-2: stimulation of chondrocyte production of proteoglycan. J Orthop Sci, 2003. 8(6): pp.829-35.

Google Scholar

[95] Shen, B., et al., BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci, 2009. 5(2): pp.192-200.

Google Scholar

[96] Gu, Y., et al., Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-beta1 in vitro. Mol Med Rep, 2012. 5(3): pp.767-72.

DOI: 10.3892/mmr.2011.713

Google Scholar

[97] Zhang, Y., et al., Comparative effects of bone morphogenetic proteins and Sox9 overexpression on matrix accumulation by bovine anulus fibrosus cells: implications for anular repair. Spine (Phila Pa 1976), 2007. 32(23): pp.2515-20.

DOI: 10.1097/brs.0b013e318158cc09

Google Scholar

[98] Wei, A., et al., BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci, 2009. 5(5): pp.388-96.

Google Scholar

[99] Corriden, R. and P.A. Insel, New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal, 2012. 8(3): pp.587-98.

DOI: 10.1007/s11302-012-9311-x

Google Scholar

[100] Vorotnikov, A.V., Chemotaxis: movement, direction, control. Biochemistry (Mosc), 2011. 76(13): pp.1528-55.

Google Scholar

[101] Cai, H. and P.N. Devreotes, Moving in the right direction: how eukaryotic cells migrate along chemical gradients. Semin Cell Dev Biol, 2011. 22(8): pp.834-41.

DOI: 10.1016/j.semcdb.2011.07.020

Google Scholar

[102] Schneider, I.C. and J.M. Haugh, Mechanisms of gradient sensing and chemotaxis: conserved pathways, diverse regulation. Cell Cycle, 2006. 5(11): pp.1130-4.

DOI: 10.4161/cc.5.11.2770

Google Scholar

[103] Kim, K.W., et al., The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine (Phila Pa 1976), 2003. 28(10): pp.982-90.

DOI: 10.1097/01.brs.0000061986.03886.4f

Google Scholar

[104] Kim, K.W., et al., Notochordal cells stimulate migration of cartilage end plate chondrocytes of the intervertebral disc in in vitro cell migration assays. Spine J, 2009. 9(4): pp.323-9.

DOI: 10.1016/j.spinee.2008.05.003

Google Scholar

[105] Hegewald, A.A., et al., The chemokines CXCL10 and XCL1 recruit human annulus fibrosus cells. Spine (Phila Pa 1976), 2012. 37(2): pp.101-7.

DOI: 10.1097/brs.0b013e318210ed55

Google Scholar

[106] Haberstroh, K., et al., Human intervertebral disc-derived cells are recruited by human serum and form nucleus pulposus-like tissue upon stimulation with TGF-beta3 or hyaluronan in vitro. Tissue Cell, 2009. 41(6): pp.414-20.

DOI: 10.1016/j.tice.2009.05.006

Google Scholar

[107] Abbushi, A., et al., Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine (Phila Pa 1976), 2008. 33(14): pp.1527-32.

DOI: 10.1097/brs.0b013e3181788760

Google Scholar

[108] Yang, F., et al., Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther, 2009. 17(11): pp.1959-66.

DOI: 10.1038/mt.2009.146

Google Scholar

[109] Illien-Junger, S., et al., Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine (Phila Pa 1976), 2012. 37(22): pp.1865-73.

DOI: 10.1097/brs.0b013e3182544a8a

Google Scholar

[110] Murray-Rust, J., et al., Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure, 1993. 1(2): pp.153-9.

DOI: 10.1016/0969-2126(93)90029-g

Google Scholar

[111] Ronnstrand, L. and C.H. Heldin, Mechanisms of platelet-derived growth factor-induced chemotaxis. Int J Cancer, 2001. 91(6): pp.757-62.

DOI: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1136>3.0.co;2-j

Google Scholar

[112] Melvin, A.T., et al., In chemotaxing fibroblasts, both high-fidelity and weakly biased cell movements track the localization of PI3K signaling. Biophys J, 2011. 100(8): pp.1893-901.

DOI: 10.1016/j.bpj.2011.02.047

Google Scholar

[113] Ozaki, Y., et al., Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev, 2007. 16(1): pp.119-29.

DOI: 10.1089/scd.2006.0032

Google Scholar

[114] Fiedler, J., et al., BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem, 2002. 87(3): pp.305-12.

DOI: 10.1002/jcb.10309

Google Scholar

[115] Tsumaki, N., et al., Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J Cell Biol, 1999. 144(1): pp.161-73.

DOI: 10.1083/jcb.144.1.161

Google Scholar

[116] Henriksson, H.B., et al., Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976), 2012. 37(9): pp.722-32.

DOI: 10.1097/brs.0b013e318231c2f7

Google Scholar

[117] Zhou, F.Y., A. Wei, and A. Diwan, In vitro assessment of the proliferative and chemotactic potential of BMP-13 on a chondrocyte cell line, in ACSR Spinal Research Symposium XI, B.J. Freeman, Editor 2013, : Adelaide, Australia. p.14.

Google Scholar