Effect of Phosphorus on Crystallization of Alkaline Molybdenum-Containing Borosilicate Glasses

Article Preview

Abstract:

The effect of additives of P2O5 on the solubility of molybdenum in the amorphous part of glass and on the phase composition of the crystallized part of the highly alkaline glasses of the Li2O–(Na2O–K2O)–B2O3-SiO2 system was studied. The comparison of the phase composition of samples with or without phosphorus prior and after annealing allowed to determine the change of solubility of molybdenum in the amorphous part of the samples and to evaluate the thermal stability of the synthesized glass-ceramic materials. It was found, that for the compositions without phosphorus and the samples without lithium, when molybdenum is added at the synthesis stage, almost all of the molybdenum is included only in the crystalline molybdates. The study has shown an increase in the solubility of molybdenum only in the structure of lithium-containing glasses with phosphorus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

720-724

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] D. Caurant, P. Loiseau, O. Majérus, V. Aubin-Chevaldonnet, I. Bardez, A. Quintas, Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes, Nova Science Publishers, New York, (2009).

DOI: 10.1016/b978-0-12-818542-1.00090-4

Google Scholar

[2] I.W. Donald, Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes, John Wiley & Sons, Ltd, (2010).

DOI: 10.1002/9781444319354

Google Scholar

[3] W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3-12.

DOI: 10.1179/174367606x81669

Google Scholar

[4] J.S. McCloy, A. Goel, Glass-ceramics for nuclear-waste immobilization, MRS Bull. 42 (2017) 233-240.

DOI: 10.1557/mrs.2017.8

Google Scholar

[5] O. Pinet, J.-F. Hollebecque, I. Hugon, V. Debono, L. Campayo, C .Vallat, V. Lemaitre, Glass ceramic for the vitrification of high level waste with a high molybdenum content, J. Nucl. Mater. 519 (2019) 121-127.

DOI: 10.1016/j.jnucmat.2019.03.041

Google Scholar

[6] S.V. Stefanovsky, M.V. Skvortsov, O.I. Stefanovsky, B.S. Nikonov, I.A. Presniakov, I.S. Glazkova, A.G. Ptashkin, Preparation and characterization of borosilicate glass waste form for immobilization of HLW from WWER spent nuclear fuel reprocessing, MRS Adv. 2 (2017) 583-589.

DOI: 10.1557/adv.2016.622

Google Scholar

[7] J.V. Crum, L. Turo, B .Riley, M. Tang, A. Kossoy, Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals, J. Am. Ceram. Soc. 95 (2012) 1297-1303.

DOI: 10.1111/j.1551-2916.2012.05089.x

Google Scholar

[8] A. Brehault, D. Patil, H. Kamat, R.E. Youngman, L.M. Thirion, J.C. Mauro, C.L. Corkhill, J.C. McCloy, A. Goel, Compositional dependence of solubility/retention of molybdenum oxides in aluminoborosilicate based model nuclear waste glasses, J Phys Chem B. 122 (2018) 1714-1729.

DOI: 10.1021/acs.jpcb.7b09158

Google Scholar

[9] K. Ishiguro, N. Kawanishi, H. Nagaki, A. Naito, Chemical States of Molybdenum in Radioactive Waste Glass, Annual Progress Report of Power Reactor and Nuclear Fuel Development Corporation, Tokyo, Japan, (1982).

Google Scholar

[10] R.J. Hand, R.J. Short, S. Morgan, N.C. Hyatt, G. Mobus, W.E. Lee, Molybdenum in glasses containing vitrified nuclear waste, Glass Technol. 46 (2005) 121-124.

Google Scholar

[11] G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, Structural role of molybdenum in nuclear glasses: an EXAFS study, J. Nucl. Mater. 322 (2003) 15-20.

DOI: 10.1016/s0022-3115(03)00277-0

Google Scholar

[12] D. Caurant, O. Majérus, E. Fadel, M. Lenoir, C. Gervais, O. Pinet, Effect of molybdenum on the structure and on the crystallization of SiO2–Na2O–CaO–B2O3 glasses, J. Am. Ceram. Soc. 90 (2007) 774-783.

DOI: 10.1111/j.1551-2916.2006.01467.x

Google Scholar

[13] N. Chouard, D. Caurant, O. Majerus, N. Guezi-Hasni, J.L. Dussossoy, R. Baddour-Hadjean, J.P. Pereira-Ramos, Thermal stability of SiO2–B2O3–Al2O3–Na2O–CaO glasses with high Nd2O3 and MoO3 concentration, J. Alloys Compd. 671 (2016) 84-99.

DOI: 10.1016/j.jallcom.2016.02.063

Google Scholar

[14] Y. Kawamoto, K. Clemens, M.Tomozawa, Effects of MoO3 on phase separation of Na2O-B2O3-SiO2 glasses, J. Am. Ceram. Soc. 64 (1981) 292-296.

DOI: 10.1111/j.1151-2916.1981.tb09605.x

Google Scholar

[15] J.S. McCloy, B.J. Riley, J. Crum, J. Marcial, J.T. Reiser, K. Kruska, J.A. Peterson, D.R. Neuville, D.S. Patil, M. Saleh, K.E. Barnsley, J.V. Hanna, Crystallization study of rare earth and molybdenum containing nuclear waste glass ceramics, J. Am. Ceram. Soc. 102 (2019) 5149-5163.

DOI: 10.1111/jace.16406

Google Scholar

[16] S. Schuller, O. Pinet, A. Grandjean, T. Blisson, Phase separation and crystallization of borosilicate glass enriched in MoO3, P2O5, ZrO2, CaO, J. Non-Cryst. Solids. 354 (2008) 296-300.

DOI: 10.1016/j.jnoncrysol.2007.07.041

Google Scholar

[17] E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Le Gac, M. Fournier, A. Mesbah, F. Vasconcelos, Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass, J. Non-Cryst. Solids. 427 (2015) 120-133.

DOI: 10.1016/j.jnoncrysol.2015.07.001

Google Scholar

[18] V.E. Eremyashev, D.A. Zherebtsov, G.G. Korinevskaya, V.V. Polozova, M.V. Shtenberg, S.A. Nayfert, The structure and thermal properties of high-alkali molybdenum-containing borosilicate matrix materials, Inorg. Mater. 57 (2021) 71-80.

DOI: 10.1134/s0020168521010052

Google Scholar

[19] A.D. Prakash, M. Singh, R.K. Mishra, T.P .Valsala, A.K. Tyagi, A. Sarkar, C.P. Kaushik, Studies on modified borosilicate glass for enhancement of solubility of Molybdenum, J. Non-Cryst. Solids. 510 (2019) 172-178.

DOI: 10.1016/j.jnoncrysol.2019.01.019

Google Scholar

[20] M. Szumera, MoO3 as a structure modifier of glasses from P2O5–SiO2–K2O–MgO–CaO system, Materials Letters. 135 (2014) 147-150.

DOI: 10.1016/j.matlet.2014.07.159

Google Scholar

[21] V.E. Eremyashev, G.G. Korinevskaja, S.S. Bukalov, Titanium in the structure of alkali borosilicate glasses, Glass Ceram. 72 (2016) 405-408.

DOI: 10.1007/s10717-016-9798-7

Google Scholar

[22] V.E. Eremyashev, D.A. Zherebtsov, L.M. Osipova, E.I. Danilina, Thermal study of melting, transition and crystallization of rubidium and caesium borosilicate glasses, Ceram. Int. 42 (2016) 18368-18372.

DOI: 10.1016/j.ceramint.2016.08.169

Google Scholar

[23] V.E. Eremyashev, D.A. Zherebtsov, M.P. Brazhnikov, R.T. Zainullina, E.I. Danilina, Cerium influence on the thermal properties and structure of high-alkaline borosilicate glasses, J. Therm. Anal. Calorim. 139 (2020) 991-997.

DOI: 10.1007/s10973-019-08472-6

Google Scholar