On the Analysis of Composition Profiles in Binary Single-Phase Diffusion Couples: Systems with a Strong Compositional Dependence of the Interdiffusion Coefficient

Article Preview

Abstract:

Diffusion couple technique is an efficient tool for the estimating the chemical diffusion coefficients. Typical experimental uncertainties of the composition profile measurements complicate a correct determination of the interdiffusion coefficients via the standard Boltzmann-Matano, Sauer-Freise or the den Broeder methods, especially for systems with a strong compositional dependence of the interdiffusion coefficient. A new approach for reliable fitting of the experimental profiles with an improved behavior at both ends of the diffusion couple is proposed and tested against the experimental data on chemical diffusion in the system Fe-Ga. An extension of the approach for reliable description of the up-hill diffusion phenomenon in multicomponent systems is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-30

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Int. Publ. Switzerland (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[2] A. Paul, A pseudo binary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Philos. Mag. 93 (2013) 2297-2315.

DOI: 10.1080/14786435.2013.769692

Google Scholar

[3] C. Matano, Jap. J. Phys. 8 (1933) 109.

Google Scholar

[4] L. Boltzmann, Ann. Physik. 53 (1894) 959.

Google Scholar

[5] S. Santra, A. Paul, Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple, Scripta Mater. 103 (2015) 18-21.

DOI: 10.1016/j.scriptamat.2015.02.027

Google Scholar

[6] F. Sauer and V. Freise, Z. Electrochem. 66 (1962) 353.

Google Scholar

[7] F.J.A. den Broeder, Scripta Met. 3 (1969) 321.

Google Scholar

[8] T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, (2001).

Google Scholar

[9] R.R. Kapoor, T.W. Eagar, Improving the calculation of interdiffusion coefficients, Metall Trans A 21 (1989) 3039-3047.

DOI: 10.1007/bf02647302

Google Scholar

[10] D. Kuang, D. Liu, W. Chen, Z. Lu, L. Zhang, Y. Du, Z. Jin, C. Tang, Int. J. Mater. Res. 107 (2016) 597-604.

Google Scholar

[11] J. Chen, L. Zhang, J. Zhong, W. Chen, Y. Du, JALCOM, 688 (2016) 320-328.

Google Scholar

[12] J. Li, W. Chen, D. Liu, W. Sun, L. Zhang, Y. Du, H. Xu, J. Phase Equilib. Diff. 34 (2013) 484-492.

Google Scholar

[13] M.A. Dayananda, Analysis of multicomponent diffusion couples for interdiffusion fluxes and interdiffusion coefficients, J Phase Equilibria Diffusion 26 (2005) 441-446.

DOI: 10.1361/154770305x66493

Google Scholar

[14] K. Cheng, D. Liu, L. Zhang, Y. Du, S. Liu, C. Tang, JALCOM 579 (2013) 124-131.

Google Scholar

[15] D. Liu, L. Zhang, Y. Du, H. Xu, Z. Jin, JALCOM 566 (2013) 156-163.

Google Scholar

[16] D. Gaertner, K. Abrahams, V. Esin, I. Steinbach, G. Wilde, S.V. Divinski, Chemical diffusion in high-entropy alloys, unpublished.

Google Scholar

[17] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, JALCOM 688 (2016) 994-1001.

DOI: 10.1016/j.jallcom.2016.07.239

Google Scholar

[18] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoeCreFeeMneNi high-entropy alloys, Acta Mater 61 (2013) 4887-4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar