Thermoluminescence and its Applications: A Review

Article Preview

Abstract:

The present review article contains various applications of Thermoluminescence. The phenomena of thermoluminescence (TL) or thermally stimulated luminescence (TSL) and optically stimulated luminescence (OSL) are widely used for measurement of radiation doses from ionizing radiations, viz. x-rays, γ rays and β particles. The applications of TL are initiated in the field of Geology followed by Archaeology, personal dosimetry, material characterization and many more to name. The TL technique has been found to be useful in dating specimens of geologically recent origin where all other conventional methods fail. It has been found to be highly successful in dating ancient pottery samples. The TL/OSL dating is done from a quartz grain, which is collected from pottery or brick, by reading the TL-output. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating the dose from unknown irradiations. The TL dosimeters are being used in personnel, environmental and medical dosimetry. During the last two decades, OSL based dosimeters have also been used for various applications. Natural and induced TL signals can be used to explore mineral, oil and natural gas. The present review presents TL theory, TL of minerals, salt, cement, salt crystals from pickles, and low temperature thermoluminescence (LLTL) of few agricultural products. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-73

Citation:

Online since:

December 2013

Authors:

Export:

Price:

[1] H. Oldenberg, Phil. Trans. Abrdg. 3 (1705) 345.

Google Scholar

[2] E. Wiedemann and G.C Schmidt, Uber Lumineszenz, Ann. Phys. Chem. Neue Folge 54 (1895) 604.

Google Scholar

[3] F. Daniels and D.F. Saunders, Science 111 (1950) 461-469.

Google Scholar

[4] J J. R. Cameron, F. Daniels, Noye Johnson, G. Kenney, Radiation Dosimeter Utilizing the Thermoluminescence of Lithium Fluoride, Science 4 August 1961: 333-334; R. Cameron, G.N. Kenney, Radiat. Research 19 (1963) 199.

DOI: 10.1126/science.134.3475.333

Google Scholar

[5] J.R. Cameron, N. Sutharlingam and G.N. Kenney, Thermoluminescence Dosimetry, Univ. of Wisconsin Press, Madison, 1968.

Google Scholar

[6] T. Yamashita, N. Nada, H. Onishi and S. Kitamura, Calcium Sulfate Activated by Thulium or Dysprosium for Thermoluminescence Dosimetry, Health Phys. 21 (1971) 295-300.

DOI: 10.1097/00004032-197108000-00016

Google Scholar

[7] S.K. Mehta and S. Sengupta, Al2O3 phosphor for thermoluminescence dosimetry, Health Phys. 31(2) (1976) 176-177.

Google Scholar

[8] N. B. Ingle, S.K. Omanwar, P.L. Muthal, S.M. Dhopte, V.K. Kondawar, T.K. Gundurao, S.V. Moharil, Synthesis of CaSO4 : Dy, CaSO4 : Eu3 + and CaSO4 : Eu2+ phosphors, Radiat. Meas. 43 (2008) 1191-1197.

DOI: 10.1016/j.radmeas.2008.03.005

Google Scholar

[9] M. Prokic, Effect of lithium co-dopant on the thermoluminescence response of some phosphors, Appl. Radiat. Isot. 52 (2000) 97-103.

Google Scholar

[10] S. K. Omanwar, K. A. Koparkar, H.S. Virk, Recent Advances and Opportunities in TLD Materials: A Review, Next Chapter 3 of this Volume (2013).

DOI: 10.4028/www.scientific.net/ddf.347.75

Google Scholar

[11] R. Janas and K. Hubner, Untersuehungenzur Thermolumineszenz dosimetrie (TLD) mitdotiertenAluminiumoxid, Keramiken, Isotopenpraxis Isotopes in Environmental and Health Studies 12 (1976) 342.

DOI: 10.1080/10256017608543939

Google Scholar

[12] B.C. Bhatt, Thermoluminescence Dosimetry: Present Status and Future Challenges. In: K.V.R. Murthy, Y.H. Gandhi and A. G. Page (Eds.), Proceedings of National Seminar on Luminescent Materials, Dec. 9-10, 2005, M. S. University of Baroda, 2006, pp.3-7.

Google Scholar

[13] M. Akiyama, C.N. Xu, K. Nonaka and T. Watanabe, Intense visible light emission from Sr3Al2O6:Eu,Dy, Appl. Phys. Letters 73 (1998) 3046.

DOI: 10.1063/1.122667

Google Scholar

[14] J.R. Rieke and F. Daniels, Thermoluminescence Studies of Aluminum Oxide, J. Phys. Chem. 61 (1957) 629-633.

DOI: 10.1021/j150551a026

Google Scholar

[15] R.J. Ginther and R.D. Kirk, The Thermoluminescence of CaF2: Mn, J. Electrochem. Soc. 104(6) (1957) 365-369.

Google Scholar

[16] S.W.S. McKeever, M. Moscovitch and P.D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses, Nuclear Technology Publishing, Ashford, UK, 1995.

Google Scholar

[17] Y.M. Nam, J.L. Kim and S.Y. Chang,Dependence of Glow Curve Structure on the Concentration of Dopants in LiF:Mg,Cu,Na,Si Phosphor,Rad. Prot. Dosim. 84(1-4) (1999) 231-234.

DOI: 10.1093/oxfordjournals.rpd.a032725

Google Scholar

[18] J.T. Randall and M.H.F. Wilkins, Phosphorescence and Electron Traps. I: The Study of Trap Distributions, Proc. Royal Society of London, Series A, 184 (999) (1945) 365-389.

DOI: 10.1098/rspa.1945.0024

Google Scholar

[19] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electrontraps. II. The interpretation of long period phosphorescence, Proc. Royal Society of London, Series A, 184 (1945) 390.

DOI: 10.1098/rspa.1945.0025

Google Scholar

[20] C. F. J. Garlick and A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proc. of Physics Society 60 (1948) 574.

DOI: 10.1088/0959-5309/60/6/308

Google Scholar

[21] R. Chen & S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena, World Scientific, Singapore, 1997.

Google Scholar

[22] C.E. May, J.A. Partridge, Thermoluminescence kinetics of alpha-irradiated alkali halides, J. Chem. Phys. 40 (1964) 1401-1409.

DOI: 10.1063/1.1725324

Google Scholar

[23] R. Chen, Glow Curves with General Order Kinetics, J. Electrochem. Soc. 116 (9) (1969) 1254-1257.

DOI: 10.1149/1.2412291

Google Scholar

[24] R.K. Gartia, S.D. Singh and P.S. Mazumdar, Determination of activation energy of TSL peak for the case of a temperature dependent frequency factor, J. of Physics D 25 (1992) 530.

DOI: 10.1088/0022-3727/25/3/030

Google Scholar

[25] W. Hoogenstraten, Philips Res. Rep. 13 (1958) 515.

Google Scholar

[26] K.S.V. Nambi, INF. IAE-54, Institute de EnergiaAtomica, Sao Paulo, Brazil, 1977, pp.12-37.

Google Scholar

[27] P. Kivitis and H.J.L. Hagebeuk, J. Lumin.Evaluation of the model for thermally stimulated luminescence and conductivity; reliability of trap depth determinations,15 (1977) 1-27.

DOI: 10.1016/0022-2313(77)90002-3

Google Scholar

[28] K.H. Nicholas and J. Woods, The evaluation of electron trapping parameters from conductivity glow curves in cadmium sulphide, Brit. J. Appl. Phys. 15 (1964) 783.

DOI: 10.1088/0508-3443/15/7/302

Google Scholar

[29] F. Urbach, Zur luminescenz der alkalihalogenide, Wiener Ber. 139 (1930) 363-372.

Google Scholar

[30] I.A. Parfianovitch, J. Exp. Theor. Phys. USSR 26 (1954) 696.

Google Scholar

[31] A. Halperin and A.A. Braner, Evaluation of Thermal Activation Energies from Glow Curves, Phys. Rev. 117 (1960) 408.

DOI: 10.1103/physrev.117.408

Google Scholar

[32] N.S. Mohan and R. Chen, Numerical curve fitting for calculating glow parameters, J.Phys.: Appl. Phys. D 3 (1970) 243.

DOI: 10.1088/0022-3727/3/2/424

Google Scholar

[33] M. Prokic and L. Botter-Jensen, Comparison of main Thermoluminescent Properties of some TL Dosemeters, Rad. Prot. Dosim. 47(1-4) (1993) 195-199.

DOI: 10.1093/oxfordjournals.rpd.a081731

Google Scholar

[34] M.J. Aitken, Physics and Archaeology, 2nd edn., Clarendon Press, Oxford, 1974; Thermoluminescence Dating, Academic Press, London, 1985.

Google Scholar

[35] M. Kumar, E. A. Raja, L. C. Prasad, K. L. Popli, R. K. Kher and B. C. Bhatt, Studies on automatic hot gas reader used in the countrywide personnel monitoring programme, Rad. Prot. Dosim. 113 (4) (2005) 366-373.

DOI: 10.1093/rpd/nch478

Google Scholar

[36] A. S. Pradhan, V. Geetha, K. Srivastava, M. M. Adtani, P. Ayappan, G. Chaurasia, A. K. Pathan, P. Lal and R.R. Bihari, Quality Assurance of TLD Personnel Monitoring: Performance of TLD Units, Rad. Prot. and Environ. 24 (2003) 262.

Google Scholar

[37] M. P. Chougaonkar, M. Kumar and B. C. Bhatt, Testing of Phosphors for their use in Radiation Dosimetry: Detailed Procedure and Protocol, Int. J. of Luminescence and Applications 2 (3) (2012) 193-221.

Google Scholar

[38] ICRP Publication 60, Ann. ICRP 21 (1-3), Pergamon Press, 1991.

Google Scholar

[39] K.V.R. Murthy and J.N. Reddy, Thermoluminescence: Basic Theory Application and Experiment, Publ. Nucleonix, Hyderabad, 2008.

Google Scholar

[40] Y.C. Nagar, M.D. Sastry, B. Bhushan, A. Kumar, K.P. Mishra, A. Shastri, M.N. Deo, G. Kocurek, J.W. Magee, S.K. Wadhawan, N. Juyal, M.S. Pandian, A.D. Shukla, and A.K. Singhvi, Chronometry and formation pathways of gypsum using Electron Spin Resonance and Fourier Transform Infrared Spectroscopy, Quaternary Geochronology 5(6) (2010) 691-704.

DOI: 10.1016/j.quageo.2010.05.001

Google Scholar

[41] M. Fattahi and S. Stokes, Dating volcanic and related sediments by luminescence methods: A review, Earth Sci. Rev. 62 (2003) 229-264.

DOI: 10.1016/s0012-8252(02)00159-9

Google Scholar

[42] M.K. Murari, H. Achyuthan, A.K. Singhvi, Luminescence studies on the sediments laid down bythe December 2004 tsunami event: Prospects for the dating of palaeo-tsunamis and for the estimation of sediment fluxes, Curr. Sci. 92 (2007) 367-371.

Google Scholar

[43] J. Chen, X. Li and Z. Yang, Baota landslide in the Three Gorges area and its OSL dating, Environmental Geology 54 (2008) 417-425.

DOI: 10.1007/s00254-007-0828-1

Google Scholar

[44] L.A. Owen, U. Kampb, J. Q. Spencer, K.Haserodt,Timing and style of Late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: A review and revision of the glacial chronology based on new optically stimulated luminescence dating, Quaternary International 97-98 (2002) 41-55.

DOI: 10.1016/s1040-6182(02)00050-2

Google Scholar

[45] M. Fattahi, H. Nazari, M.D. Bateman, B. Meyer, M. Sebrier, M. Talebian, K. le Dortz, M. Foroutan, F.G. Ahmadi and M. Ghorashi, Refining theOSL age of the last earthquake on the Dheshir fault, Central Iran, Quaternary Geochronology 5 (2010) 286-292.

DOI: 10.1016/j.quageo.2009.04.005

Google Scholar

[46] R.J. Wasson, Y.P. Sundriyal, S. Chaudhary, M. Jaiswal, P. Morthekai, S.P. Sati and N. Juyal, A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Reviews 77 (2013) 156-166.

DOI: 10.1016/j.quascirev.2013.07.022

Google Scholar

[47] N. Itoh, D. Stoneham and A..M. Stoneham, Ionic and electronic processes inquartz: Mechanisms of thermoluminescence and optically stimulated luminescence,J. of Appl. Phys. 92 (2002) 5036-5045.

DOI: 10.1063/1.1510951

Google Scholar

[48] J.S. Singarayer and R.M. Bailey, Further invstigations of the quartz optically stimulated luminescence components using linear modulation, Rad. Meas. 37 (2003) 451-458.

DOI: 10.1016/s1350-4487(03)00062-3

Google Scholar

[49] M. Jain, A.S. Murray and L. Bøtter-Jensen, Characterization of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement, Radiation Measurements 37(4) (2003) 441-449.

DOI: 10.1016/s1350-4487(03)00052-0

Google Scholar

[50] R. M. Bailey, The slow component of quartz optically stimulated luminiscence, Rad. Meas. 32 (2000) 233-246.

Google Scholar

[51] X.L. Wang, A.G. Wintle, Y.C. Lu, Testing a single-aliquot protocol for recuperated OSL dating, Radiat. Meas. 42 (2007) 380-391.

DOI: 10.1016/j.radmeas.2006.12.015

Google Scholar

[52] C. Athanassas and N. Zacharias,Equivalent dose estimation in coarse quartz from Pleistocene coastal sediments of south Greece using single-aliquot TT-OSL, Quaternary Geochronology 5 (2010) 65-75.

DOI: 10.1016/j.quageo.2009.09.010

Google Scholar

[53] M. Fattahi and S. Stokes, Red luminescence from potassium feldspar for dating applications: a study of some properties relevant for dating, Radiation Measurements, 37 (2003) 647-660.

DOI: 10.1016/s1350-4487(03)00246-4

Google Scholar

[54] Z. Shen and B. Mauz, Optical dating of young deltaic deposits on a decadal time scale, Quaternary Geochronology 10 (2012)110-116.

DOI: 10.1016/j.quageo.2012.01.014

Google Scholar

[55] Y.S. Mayya, P. Morthekai, M.K. Murariand A.K. Singhvi, Modelling of the dose-rate variations with depth in the Martian regolith using EANT4, Radiation Measurements 41 (2006)1032-1039.

DOI: 10.1016/j.radmeas.2006.08.004

Google Scholar

[56] A.K. Singhvi, S. Stokes, N. Chauhan, Y. Nagarand M.K. Jaiswal, Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination, Geochronometria 38 (2011)231-241.

DOI: 10.2478/s13386-011-0028-3

Google Scholar

[57] G. Hütt, I. Jaek, J. Tchonka, Optical dating: K-feldspars optical response stimulation spectra, Quat. Sci. Rev. 7 (1988) 381.

DOI: 10.1016/0277-3791(88)90033-9

Google Scholar

[58] P. Morthekai and D. V. Reddy, Applications of TL and OSL in terrestrial and extra-terrestrial materials: recent developments and challenges, International Journal of Luminescence and Applications, 2(3) (2012) 96-108.

Google Scholar

[59] D.J. Huntley and M. Lamothe, Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences 38 (2001) 1093-1106.

DOI: 10.1139/e01-013

Google Scholar

[60] R. Visocekas, G. Guerin, TL dating of feldspars using their far-red emission to deal with anomalous fading, Radiat. Meas. 41 (2006) 942-947.

DOI: 10.1016/j.radmeas.2006.04.023

Google Scholar

[61] R.H. Kars, J. Wallinga, K.M. Cohen, A new approach towards anomalous fading correction for feldspar IRSL dating - tests on samples in field saturation, Radiat. Meas. 43 (2008) 786-790.

DOI: 10.1016/j.radmeas.2008.01.021

Google Scholar

[62] M. Lamothe, M. Auclair, C. Hamzaoui, S. Huot, Towards a prediction of long-term anomalous fading of feldspar IRSL, Radiat. Meas. 37 (2003) 493-498.

DOI: 10.1016/s1350-4487(03)00016-7

Google Scholar

[63] P. Morthekai, M. Jain, A.S. Murray, K.J. Thomsen, L. Bøtter-Jensen, Fading characteristics of martian analogue materials and the applicability of a correction procedure, Radiat. Meas. 43 (2008) 672-678.

DOI: 10.1016/j.radmeas.2008.02.019

Google Scholar

[64] P. Morthekai, M. Jain, P.P. Cunha, J.M. Azevedo, A.K. Singhvi, An attempt to correct for the fading in million year old basaltic rocks, Geochronometria 38 (2011) 223-230.

DOI: 10.2478/s13386-011-0033-6

Google Scholar

[65] M. Jain and C. Ankjaergaard, Towards a non-fading signal in feldspar: Insight into charge transport and tunneling from time-resolved optically stimulated luminescence, Radiation Measurements 46 (2011) 292-309.

DOI: 10.1016/j.radmeas.2010.12.004

Google Scholar

[66] S. Tsukamoto, P.M. Denby, A.S. Murray and L. Bøtter -Jensen, Time-resolved luminescence from feldspars: New insight into fading, Rad. Meas.41 (2006) 790-795.

DOI: 10.1016/j.radmeas.2006.05.013

Google Scholar

[67] K.J. Thomsen, A.S. Murray, M. Jain, L. Bøtter-Jensen, Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas. 43 (2008) 1474-1486.

DOI: 10.1016/j.radmeas.2008.06.002

Google Scholar

[68] J.P. Buylaert, A.S. Murray and K.J. Thomsen,Testing the potential of an elevated temperature IRSL signal from K-feldspar, Rad. Meas. 44 (2009) 560-565.

DOI: 10.1016/j.radmeas.2009.02.007

Google Scholar

[69] T. Lauer, M Krbetschek, B Mauz and M Frechen, Yellow stimulated luminescence from potassium feldspar: Observations on its suitability for dating, Radiation Measurements, 47 (2012)974-980.

DOI: 10.1016/j.radmeas.2012.08.002

Google Scholar

[70] T. Lauer, M. Krbetschek, M. Frechen, S. Tsukamoto, C. Hoselmann and M. Weidenfeller, Infrared radio-fluorescence (IR-RF) dating of Middle Pleistocene archives of the Heidelberg Basin (Southwest Germany), Geochronology 38(2011) 23-33.

DOI: 10.2478/s13386-011-0006-9

Google Scholar

[71] K. A. Farley, (U–Th)/He dating: Techniques, Calibrationsand Applications, Reviews In Mineralogy & Geochemistry, Washington, 47 (2002) 819–844.

DOI: 10.2138/rmg.2002.47.18

Google Scholar

[72] N. Tsuchiya and K. Fujino, Evaluation of Cooling History of the Takidani Pluton using Thermoluminiscence Technique, Proc. World Geothermal Congress, 2000, pp.3939-3944.

Google Scholar

[73] B. Li and S.H. Li, Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar, Quat. Geochronol. 10 (2012) 24-31.

DOI: 10.1016/j.quageo.2011.12.005

Google Scholar

[74] N.R.J. Poolton, R.H. Kars, J. Wallinga and J.J. Boss, Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars, J. of Phys. :Condensed Matter 21 (2009) 485505-485515.

DOI: 10.1088/0953-8984/21/48/485505

Google Scholar

[75] V. Pagonis, M. Jain, A. S. Murray, C.Ankjaergaard, C. and R. Chen, Modeling of the shape of infrared stimulated luminescence signals in feldspars, Radiation Measurements 47, (2012) 870-876.

DOI: 10.1016/j.radmeas.2012.02.012

Google Scholar

[76] A. Alimuddin, N. Shah, K. Gandhiand and S. Satyam, J. Society of Petroleum Engineers, 2011.

Google Scholar

[77] S.W.S.McKeever, Thermoluminescence of Solids, Cambridge University Press, 1983.

Google Scholar

[78] D.W. Sears, The dating of meteorites, PACT J. 2 (3) (1978) 231.

Google Scholar

[79] R.M. Walker, D.W. Zimmerman and J. Zimmerman, Thermoluminescence of lunar samples: Measurement of temperature gradients in core material, The Moon 4(3-4) (1972) 308- 314.

DOI: 10.1007/bf00561999

Google Scholar

[80] P. Morthekai, M. Jain, L. Dartness, A.S. Murray, L. Bøtter-Jensen and L. Desorgher, Modelling of the dose-rate variations with depth in the Martian regolith using GEANT4, Nucl. Instrum. Meth. Phys. Res. A 580 (2007) 667-670.

DOI: 10.1016/j.nima.2007.05.118

Google Scholar

[81] K.V.R. Murthy, B. Subba Rao, K. Suresh, C.A. Rao, B.W.R. Kumar, Thermoluminescence Dosimetry Characteristics of Salt Crystals from Indian Pickles, Solid State Track Detectors and their Applications, In: Proc. of 17th National SSNTD Conference held in MSU Baroda, Vadodra, Oct. 25-27, 2011. (Ed.), N.L. Singh, Narosa Publishing House, New Delhi, 2013, pp.210-213.

Google Scholar

[82] H.I. Pandya, I.I. Pandya, V. Patel and K. V. R. Murthy, Thermoluminescence Technique as a Tool in Cement quality control, Proc. of ICLA-2012, Publ. Manoj Printers, Hyderabad, ISBN:81-6717-806-5 (2012), p.355.

Google Scholar

[83] C. L. Edwards, R. Morgan, L. Norman, G.P. Funkhouser and A.R. Barron, Correlation of Cement Performance Property Measurements with C3S/C2S Ratio Determined by Solid State 29Si NMR Measurements, Ind. Eng. Chem. Res.  47 (15) (2008) 5456–5463.

DOI: 10.1021/ie8000925

Google Scholar

[84] D. Marchon, Werkstoffe I: Cement Solutions, Institute for Bulding Materials, Swiss Federal Institute of Technology, Zurich, 1st June, 2011 Questions/Report, pp.1-9.

Google Scholar

[85] K.V.R. Murthy, Y.S. Patel, A.S. Sai Prasad, V. Natarajan, A.G. Page, Role of Lamp Phosphors in Radiation Monitoring, Radiation Measurements 36 (2003) 483-485.

DOI: 10.1016/s1350-4487(03)00177-x

Google Scholar

[86] K.V.R. Murthy, S.P. Pallavi, R. Ghildiyal, M.C. Parmar, Y.S. Patel, V. Ravi Kumar, A.S. Sai Prasad, V. Natarajan, A.G. Page, Compact Fluorescent Lamp Phosphors in Accidental Radiation Monitoring, Radiat. Prot. Dosim. 120 (1-4) (2006) 238-241.

DOI: 10.1093/rpd/nci569

Google Scholar

[87] K.V.R. Murthy and Louis Rey, LTTL of Rice, In: K.V.R. Murthy and B.N. Lakshminarasappa (Eds.), Proc. of National Conference on Luminescence Applications (NCLA-2005), Publ. Bangalore University and Luminescence Society of India, XII (2005) 56.

Google Scholar

[88] K.V.R. Murthy, L. Rey and P. Belon, Photoluminescence and thermally stimulated luminescence characteristics of rice flour, J. Lumin. 122/123 (2007) 279.

DOI: 10.1016/j.jlumin.2006.01.140

Google Scholar

[89] K.V.R. Murthy, L. Rey and P. Belon, Low Temperature TSL characteristics of Rice flour with and without H2O and D2O, Proc. of International Conference Luminescence and its Applications (ICLA-2008), McMillan India Ltd., Bangalore, India, ISBN: 978-0230-63468-8, 2008, pp.241-246.

Google Scholar

[90] K.V.R. Murthy, Phase Change Thermoluminescence, Luminescence and its Applications, In:K.V.R. Murthy, T.R. Joshi and L.H. Prasad (Eds.), Proc. of International Conference on Luminescence and its Applications (ICLA-2000), Publ. Luminescence Society of India, Vol. I (2000) 212-214.

Google Scholar

[91] D. Johari and M. Hopf, Domestication of Plants in the Old World, 3rd edn., Oxford University Press, New York, 2000.

DOI: 10.1006/anbo.2001.1505

Google Scholar

[92] K.V.R. Murthy, Low Temperature TL Characteristics of X-ray and E-beam irradiated Turmeric Powder, Proc. of National Conference on Luminescence Applications (NCLA) 2007, McMillan India Ltd., Bangalore, India, ISBN:978-0230-63054-3, 2007, pp.215-218.

Google Scholar

[93] K. V. R. Murthy, L. Rey and P. Belon, Low Temperature TL characteristics of Tamarind and Coriandar powder, Proc. of International Conference Luminescence and its Applications (ICLA-2008), Pub. Luminescence Society of India, 2008, pp.20-24.

Google Scholar

[94] K.V.R. Murthy, Low Temperature TL of Sr3Al2O6:X,Y, Proc. of International Conference Luminescence and its Applications (ICLA-2008), McMillan India Ltd., Bangalore, India, ISBN: 978-0230-63468-8, 2008, pp.207-210.

Google Scholar

[95] P. Page, R. Ghildiyal, K.V.R. Murthy, Synthesis, characterization and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant, Mater. Res. Bull. (India) 41 (2006) 1854-1860.

DOI: 10.1016/j.materresbull.2006.03.012

Google Scholar

[96] R. Ghildiyal, P. Page, K.V.R. Murthy, Synthesis and characterization of Sr2CeO4 phosphor: Positive features of sol–gel technique, J. of Luminescence, 124 (2007) 217–220.

DOI: 10.1016/j.jlumin.2006.03.009

Google Scholar

[97] P. Page, R. Ghildiyal, K.V.R. Murthy, Photoluminescence and thermoluminescence properties of Sr3Al2O6:Tb3+, Mater. Res. Bull. (India) 43 (2008) 353–360.

DOI: 10.1016/j.materresbull.2007.03.001

Google Scholar

[98] Pallavi Page, Ph.D. Thesis (unpublished): Photoluminescence and Thermoluminescence properties of Sr3Al2O6 doped with Rare Earths, M.S. University of Baroda, Vadodra, 2009.

Google Scholar