Hydrothermal Synthesis and Characterization of Cerium-Based Oxides

Article Preview

Abstract:

We report a facile hydrothermal synthesis in base solution for shape/size-controlled ceria (CeO2) nanocrystals and CeO2-ZrO2 solid solution. CeO2 nanocrystals in the shape of nanorods, nanotubes, or nanocubes with reactive {110} and {200} faces can be produced using this hydrothermal method. We found that hydrothermal reaction temperature is a critical parameter to control the shape and size of ceria nanocrystals. Above 210 °C, high resolution transmission electron microscopy studies revealed that the CeO2 nanocubes expose predominant {200} crystal planes. Microscopic investigation showed that the CeO2-ZrO2 solid solutions synthesized using this method had high crystallinity, and compositional homogeneity, and improved low-temperature reducibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

352-358

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] S. Bernal, F.J. Botana, J.J. Calvino, M.A. Cauqui, G.A. Cifredo, A. Jobacho, J.M. Pintado, J.M. Rodrfguez-Izquierdo, J. Phys. Chem. 97 (1993) 4118-4123.

DOI: 10.1021/j100118a031

Google Scholar

[2] P. Fornasiero, R. Dimonte, G.R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal. 151(1995) 168-177.

DOI: 10.1006/jcat.1995.1019

Google Scholar

[3] G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, M. Saiful Islam, J.D. Gale, J. Phys. Chem. B 101(1997) 1750-1753.

Google Scholar

[4] M. Shelef, R.W. McCabe, Catalysis Today 62 (2000), 35-50.

Google Scholar

[5] R.J. Gorte, AIChE Journal 56 (2010) 1126-1135.

Google Scholar

[6] R. Wang, P.A. Crozier, R. Sharma, J.B. Adams, J. Phys. Chem. B 110 (2006) 18278-18285.

Google Scholar

[7] R. Wang, P.A. Crozier, R. Sharma, J. Mater. Chem. 20 (2010) 7497-7505.

Google Scholar

[8] R. Wang, S.I. Mutinda, Chem. Phys. Lett. 517 (2011) 186-189.

Google Scholar

[9] R. Wang, M.H. Fang, J. Mater. Chem. 22 (2012) 1770-1773.

Google Scholar

[10] R. Wang, P.A. Crozier, R. Sharma, J. Phys. Chem. C 113 (2009) 5700-5704.

Google Scholar

[11] J.C. Conesa, Surf. Sci. 339 (1995) 337-352.

Google Scholar

[12] M. Fronzi, A. Soon, B. Delley, E. Traversa, C. Stampfl, J. Chem. Phys. 131(2009) 104701.

DOI: 10.1063/1.3191784

Google Scholar

[13] Z.X. Yang, T.K. Woo, M. Baudin, K. Hermansson, J. Chem. Phys. 120 (2004), 7741-7749.

Google Scholar

[14] K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, Y.D. Li, J. Catal. 229 (2005) 206-212.

Google Scholar

[15] K.B. Zhou, Z.Q. Yang, S. Yang, Chem. Mater. 19 (2007) 1215-1217.

Google Scholar

[16] P. Fornasiero, G. Balducci, R. DiMonte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, J. Catal. 164 (1996), 173-183.

DOI: 10.1006/jcat.1996.0373

Google Scholar

[17] N. Sergent, J.F. Lamonier, and A. Aboukais, Chem. Mater. 12 (2000) 3830-3835.

Google Scholar

[18] C.H. Liang, J.S. Qiu, Z.L. Li, and C. Li, Nanotechnology 15 (2004) 843-847.

Google Scholar

[19] A. Suda, Y. Ukyo, K. Yamamura, H. Sobukawa, T. Sasaki, Y. Nagai, T. Tanabe, M. Sugiura, J. Ceram. Soc. Jap. 112 (2004) 586-589.

DOI: 10.2109/jcersj.112.586

Google Scholar

[20] R. Wang, P.A. Crozier, R. Sharma, J.B. Adams, Nano Letters 8(2008) 962-967.

Google Scholar

[21] T. Montini, M. Banares, N. Hickey, R. Di Monte, P. Fornasiero, J. Kasper, M. Graziani, Phys. Chem. Chem. Phys. 6 (2004) 1-3.

Google Scholar

[22] I. Alessandri, M. Banares, L.E. Depero, M. Ferroni, P. Fornasiero, F.C. Gennari, N. Hickey, M.V. Martinez-Huerta, T. Montini, Topics in Catalysis 41 (2006) 35-42.

DOI: 10.1007/s11244-006-0092-8

Google Scholar

[23] P.A. Crozier, R. Wang, R. Sharma, Ultramicroscopy 108 (2008) 1432-1440.

Google Scholar

[24] J. Pérez-Omil, A.S. Bernal, J.J. Calvino, J.C. Hernández, C. Mira, M. Rodríguez-Luque, P.R. Erni, N.D. Browning, Chem. Mater. 17 (2005) 4282-4285.

DOI: 10.1021/cm050976g

Google Scholar

[25] F. Zhang, J.M. Raitano, C. Chen, J.C. Hanson, W. Caliebe, S. Khalid, S.W. Chan, J. Appl. Phys. 99 (2006) 0843131-0843138.

Google Scholar