An Investigation of Mechanical Properties and Microstructural Evolution in an Aluminum Alloy Processed by Severe Plastic Deformation

Article Preview

Abstract:

Processing by a combination of equal-channel angular pressing (ECAP) and high-pressuretorsion (HPT) was performed on disks of an Al-7075 alloy. The alloy was annealed at 753 K, processedby ECAP for totals of 4 passes and then processed by HPT under a pressure of 6.0 GPa up to amaximum of 20 turns. Measurements of Vickers microhardness showed reasonable hardnesshomogeneity after processing through 20 turns. It is demonstrated that the results from mechanicaltesting and microstructural analysis are consistent with the hardness measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

610-615

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[2] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[3] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893.

Google Scholar

[4] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong,
Scripta Mater. 39 (1998) 1221.

Google Scholar

[5] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Scripta Mater. 36 (1997) 69.

DOI: 10.1016/s1359-6462(96)00344-2

Google Scholar

[6] V.V. Stolyarov, Y.T. Zhu, I.Y. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A299 (2001) 59.

Google Scholar

[7] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52 (2004) 4589.

Google Scholar

[8] M. Furukawa, Z. Horita, T.G. Langdon, J. Mater. Sci. 40 (2005) 909.

Google Scholar

[9] S.N. Alhajeri, N. Gao, T.G. Langdon, Mater. Sci. Eng. A528 (2011) 3833.

Google Scholar

[10] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A556 (2012) 526.

Google Scholar

[11] C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 56 (2008) 5168.

Google Scholar

[12] C. Xu, S.V. Dobatkin, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A500 (2009) 170.

Google Scholar

[13] Z.C. Duan, X.Z. Liao, M. Kawasaki, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45 (2010) 4621.

Google Scholar

[14] J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, T.G. Langdon, Mater. Sci. Eng. A528 (2011) 7715.

Google Scholar

[15] M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, Mater. Sci. Eng. A529 (2011) 345.

Google Scholar

[16] N. Lugo, N. Llorca, J.M. Cabrera, Z. Horita, Mater. Sci. Eng. A477 (2008) 366.

Google Scholar

[17] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, R.Z. Valiev, Nanostructured Mater. 11 (1999) 947.

Google Scholar

[18] A.P. Zhilyaev, M.D. Baro, T.G. Langdon, T.R. McNelley, Rev. Adv. Mater. Sci. 7 (2004) 41.

Google Scholar

[19] V.V. Popov, E.V. Popova, A.V. Stolbovskiy, Mater. Sci. Eng. A539 (2012) 22.

Google Scholar

[20] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 48 (2013) 4653.

Google Scholar

[21] J. Wongsa-Ngam, H. Wen, T.G. Langdon, Mater. Sci. Eng. A579 (2013) 126.

Google Scholar

[22] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A257 (1999) 328.

Google Scholar

[23] K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. 29A (1998) (2011).

Google Scholar

[24] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Mater. Sci. Eng. A528 (2011) 8198.

Google Scholar

[25] M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A498 (2008) 341.

Google Scholar

[26] S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47 (2012) 7789.

Google Scholar