Synthesis and Characterization of Amphiphilic Multiwalled Carbon Nanotubes Based on Linear Triblock Copolymer

Article Preview

Abstract:

Amphiphilic multiwalled carbon nanotubes PMAA-g-MWCNT-g-PSt were prepared by grafting linear triblock copolymer PtBMA100-b-PGMA19-b-PSt101 onto the carboxyl multiwalled carbon nanotubes surface with an oxirane cleavage reaction. The ratio of intensity between D band and G band and the shifting of these bands in Raman spectroscopy showed good agreement with fourier transform infrared spectroscopy especially the appearance of the characteristic group of benzene ring at 673 cm-1 for PMAA-g-MWCNT-g-PSt. Thermogravimetric analysis showed that the contents of polymer grafted on the surface of carboxyl multiwalled carbon nanotubes were 36 % and 55 % for PMAA-g-MWCNT-g-PSt and PtBMA-g-MWCNTs-g-PDMAEMA, respectively. The introduction of the cinnamic group into PtBMA100-b-PGMA19-b-PSt101 induced the activation energy of PMAA-g-MWCNT-g-PSt much higher than that of PtBMA-g-MWCNTs-g-PDMAEMA after 238 oC during their thermal decompositions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

732-741

Citation:

Online since:

April 2014

Authors:

Export:

Price:

* - Corresponding Author

[1] J. Shen, Y. Hu, C. Qin, M. Ye, Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization, Langmuir. 24 (2008) 3993-3997.

DOI: 10.1021/la703957t

Google Scholar

[2] X. Sun, W. Zhao, Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach, Mater. Sci. Eng. A. 390 (2005) 366-371.

DOI: 10.1016/j.msea.2004.08.020

Google Scholar

[3] E. Unger, A. Graham, F. Kreupl, M. Liebau, W. Hoenlein, Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification, Curr. Appl. Phys. 2 (2002) 107-111.

DOI: 10.1016/s1567-1739(01)00072-4

Google Scholar

[4] H. Yi, H. Song and X. Chen: Carbon Nanotube Capsules Self-Assembled by W/O Emulsion Technique, Langmuir. 23 (2007) 3199-3204.

DOI: 10.1021/la0627516

Google Scholar

[5] V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, Organic functionalization of carbon nanotubes, J. Am. Chem. Soc. 124 (2002) 760-761.

DOI: 10.1021/ja016954m

Google Scholar

[6] J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn, Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites, Carbon. 44 (2006) 1898-(1905).

DOI: 10.1016/j.carbon.2006.02.026

Google Scholar

[7] F. H. Gojny, K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64 (2004) 2303-2308.

DOI: 10.1016/j.compscitech.2004.01.024

Google Scholar

[8] J. Zhu, H. Peng, M. F. Rodriguez, J. L. Margrave, V. N. Khabashesku, M. Imam, K. Lozano, E. V. Barrera, Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14 (2004) 643-648.

DOI: 10.1002/adfm.200305162

Google Scholar

[9] J. L. Cheng, J. P. He, C. X. Li, Y. L. Yang, Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes, Chem. Mater. 20 (2008) 4224-4230.

DOI: 10.1021/cm800357g

Google Scholar

[10] D. J. Li, X. Sheng, B. Zhao, Seedless growth of free-standing copper nanowires by chemical vapor deposition, J. Am. Chem. Soc. 127 (2005) 6248-6249.

DOI: 10.1021/ja049217+

Google Scholar

[11] Y. Lin, H. Skaff, A. Boker, A. D. Dinsmore, T. Emrick, T. P. Russell, Ultrathin cross-linked nanoparticle membranes, J. Am. Chem. Soc. 125 (2003) 12690-12691.

DOI: 10.1021/ja036919a

Google Scholar

[12] H. Skaff, Y. Lin, R. Tangirala, K. Breitenkamp, A. Boker, T. P. Russell, T. Emrick, Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking, Adv. Mater. 17 (2005) 2082-(2086).

DOI: 10.1002/adma.200500587

Google Scholar

[13] T. P. T. Le, G. Moad, E. Rizzardo, and S. H. Thang, PCT International Patent Application WO 9801478 A1 980115. (1998).

Google Scholar

[14] W. J. Huang, S. Fernando, L. F. Allard, Y. P. Sun, Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions, Nano. Lett. 3 (2003) 565-568.

DOI: 10.1021/nl0340834

Google Scholar

[15] K. S. Mayya, B. Schoeler, F. Caruso, Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles, Adv. Funct. Mater. 13 (2003) 183-188.

DOI: 10.1002/adfm.200390028

Google Scholar

[16] M. M. Zhang, L. Liu, H. Y. Zhao, Y. Yang, G. Q. Fu, B. L. He, Double-responsive polymer brushes on the surface of colloid particles, J. Colloid Interface Sci. 301 (2006) 85-91.

DOI: 10.1016/j.jcis.2006.05.004

Google Scholar

[17] D. X. Li, Q. He, Y. Cui, J. B. Li, Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine), Chem. Mater. 19 (2007) 412-417.

DOI: 10.1021/cm062290+

Google Scholar

[18] D. Wang, H. Duan, H. W. Mohwald: The water/oil interface: the emerging horizon for self-assembly of nanoparticles, Soft Matter. 1 (2005) 412-416.

DOI: 10.1039/b511911a

Google Scholar

[19] W. H. Binder, Supramolecular Assembly of Nanoparticles at Liquid–Liquid Interfaces, Angew. Chem. Int. Ed. 44 (2005) 5172-5175.

DOI: 10.1002/anie.200501220

Google Scholar

[20] (a) M. J. Starink, On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature-dependent equilibrium state, J. Mater. Sci. 32 (1997).

Google Scholar