Adsorption Mechanism of Carbon Monoxide on PtRu and PtRuMo Surfaces in the Density Functional Theory Perspective

Article Preview

Abstract:

Adsorption mechanism of carbon monoxide (CO) on PtRu and PtRuMo alloy surfaces is investigated using density functional theory (DFT). It includes evaluation of binding configuration and the adsorption strength. The results show that CO preferentially adsorbs onto the 3 fold hollow site of the PtRu-surface, while on the PtRuMo surface we observe the shift from the fcc hollow site to near the bridge site. We also note that adsorption energy of CO on the PtRuMo is stronger than that of adsorption on the PtRu surface. From the charge transfer analysis, we conclude that the stronger binding energy is caused by the more charge transferred to the surface-adsorbate bonding region brought by alloying Mo to the PtRu.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

537-540

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons Inc, New York, (1994).

Google Scholar

[2] M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II Enhancement of the oxidation of methanol on Platinum by Ruthenium ad-atoms, J. Electroanal. Chem. 60 (1975) 267-273.

DOI: 10.1002/chin.197526128

Google Scholar

[3] M.T. Paffet, S.C. Gebhart, R.G. Windham, B.E. Koel, Chemisorption of carbon monoxide, hydrogen, and oxygen on ordered tin/platinum(111) surface alloys, J. Phys. Chem. 94 (1990) 6831–6839.

DOI: 10.1021/j100380a053

Google Scholar

[4] C. Xu, B.E. Koel, Probing the modifier precursor state: adsorption of CO on Sn/Pt(111) surface alloys, Surf. Sci. 304 (1994) L505-L511.

DOI: 10.1016/0039-6028(94)91335-8

Google Scholar

[5] W.T. Cahyanto, M.C. S Escaño, R.L. Arevalo, H. Kasai, Pt(111)-alloy surfaces for non-activated OOH dissociation, e-J. Surf. Sci. Nanotech. 9 (2011) 352-356.

DOI: 10.1380/ejssnt.2011.352

Google Scholar

[6] J.C. Davies, B.E. Hayden, D.J. Pegg, The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation, Surf. Sci. 467 (2000) 118-130.

DOI: 10.1016/s0039-6028(00)00743-3

Google Scholar

[7] B.C. Han, G. Ceder, Effect of coadsorption and Ru alloying on the adsorption of CO on Pt, Phys. Rev. B 74 (2006) 2054181 – 2054188.

DOI: 10.1103/physrevb.74.205418

Google Scholar

[8] Q. Ge, S. Desai, M. Neurock, K. Kourtakis, CO adsorption on Pt-Ru surface alloys and on the surface of Pt-Ru bulk alloy, J. Phys. Chem. B 105 (2001) 9533-9536.

DOI: 10.1021/jp011144i

Google Scholar

[9] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[10] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46 (1992).

DOI: 10.1103/physrevb.46.6671

Google Scholar

[11] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[13] M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616-3621.

DOI: 10.1103/physrevb.40.3616

Google Scholar

[14] L. Bengtsson, Dipole correction for surface supercell calculations, Phys. Rev. B 59 (1999) 12301-12304.

DOI: 10.1103/physrevb.59.12301

Google Scholar

[15] K.R. Lee, M.K. Jeon, S.I. Woo, Composition optimization of PtRuM/C (M=Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method, Appl. Catal. B 91 (2009) 428-433.

DOI: 10.1016/j.apcatb.2009.06.011

Google Scholar

[16] A.V. Ruban, H.L. Skriver, J.K. Nørskov, Surface segregation energies in transition-metal alloys, Phys. Rev. B 59 (1999) 15990-16000.

DOI: 10.1103/physrevb.59.15990

Google Scholar

[17] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558-561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[18] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[19] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[20] K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, (1979).

DOI: 10.1007/978-1-4757-0961-2_2

Google Scholar

[21] Y. Wang, S. de Gironcoli, N.S. Hush, J.R. Reimers, Succesfull a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory, J. Am. Chem. Soc. 129 (2007) 10402-10407.

DOI: 10.1021/ja0712367

Google Scholar

[22] B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis - calculations and concepts, Adv. Catal. 45 (2000) 71-129.

DOI: 10.1016/s0360-0564(02)45013-4

Google Scholar

[23] R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, (1990).

Google Scholar