Effect of UV Treatment on Optical Properties of Low-Density Polyethylene Films Doped with Eu(TTA)3phen Complex

Article Preview

Abstract:

Low-Density Polyethylene (LDPE) films doped with Eu (TTA)3phen complex (TTA=2-thenoyltrifluoroacetone, phen=1,10-phenanthroline) were fabricated by hot-blowing technique for thickness of 100 μm. The films were doped with 0.1 % of Eu (TTA)3phen to the total weight of LDPE and exposed to UV irradiation from deuterium lamp for 5, 10, 20, 40 and 60 hours to investigate the effect of its optical properties. The films were characterized by Spectrofluorometer, UV/VIS Spectrophotometer and FT-IR Spectrometer to measure their emission spectra, lifetimes, transmission transparency and chemical bonding. Photoluminescence of the room-temperature Eu (TTA)3phen doped films consist of typical Eu3+ emission transition lines with hypersensitive 5D0 7F2 emission band at 610 nm. After 20 hours UV treatment, the peak intensity dropped by 90 % and shortened the luminescent lifetimes from 0.654 ms to 0.305 ms. Longer UV treatment also has accelerated degradation in doped LDPE films shown by significant reducing in absorption peak of FTIR at 3395, 3186 and 1645 cm-1. The results would provide a mechanism to improve the lifetime of the LDPE by utilizing the light-manipulation property of Eu (TTA)3phen complex to absorb UV spectrum and covert into red emission.Keywords: LDPE, rare-earth complex, photoluminescence

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-161

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] M.C.F. Cunha, H.F. Brito, L.B. Zinner and G. Vicenti (1992); Coord. Chem. Rev. 119, 1-28.

Google Scholar

[2] N. Sabbatini, M. Guardigli and J. M. Lehn (1993); Coord. Chem. Rev . 123, 201-228.

Google Scholar

[3] G. Vicentini, L.B. Zinner, J. Zikerman-Schpector and K. Zinner (2000); Coord. Chem. Rev. 123, 201-228.

Google Scholar

[4] R. Pogreb, B. Finkelshtein, Y. Shmukler, A. Musina, O. Popov, O. Stanevsky, S. Yitzchaik, A. Gladkikh, A. Shulzinger, V. Streltsov, D. Davidof, and E. Bormashenko (2004); Polymers for Advanced Technologies Vol. 15, p.414–418.

DOI: 10.1002/pat.488

Google Scholar

[5] Tang Ruiren, Zhang Wei, Luo Yiming, Li Jun (2009); J. Rare Earths, Vol. 27, No. 3, p.362.

Google Scholar

[6] Q.H. Xu, L.S. Li, X.S. Liu, and R. R Xu (2002); Chem. Mater. 14, 549.

Google Scholar

[7] Y. F. Yuan, T. Cardinaels, K. Lunstroot, K.V. Hecke, L. V Meervelt, C. Go1rller-Walrand, K. Binnemans and P. Nockemann (2007); Inorg. Chem. 46, 5302.

DOI: 10.1021/ic070303v

Google Scholar

[8] H. Zhang, H. W Song, B. Dong, L.L. Han, G.H. Pan, X. Bai; L.B. Fan, S.Z. Lu, H.F. Zhao and F. Wang (2008); J. Phys. Chem. C 112, 9155.

Google Scholar

[9] Kihlman Øiseth S., Krozer A., Lausmaa J., Kasemo B. (2004); J. App. Pol. Sci., 2004, 92, 2833-2839.

Google Scholar

[10] Samuoliene, G., Brazaityte, A., Urbonaviciute, A., Sabajeviene, G. and Duchovskis, P. (2010); Zemdirbyste-Agr., vol. 97, No. 2 (2010), pp.99-104.

Google Scholar

[11] V.R. Sastri, J. -C. Bűnzli, R. Ramachandra, G.V.S. Rayudu, and J.R. Perumareddi (2003); Modern Aspects of Rare Earths and their Complexes, Elsevier, Amsterdam.

DOI: 10.1016/b978-044451010-5/50014-6

Google Scholar

[12] Zhang X., Wen S., Hu S., Chen Q., Fong H., Zhang L., and Liu L. (2010); J. Phys. Chem. C, 114, 3898–3903.

Google Scholar

[13] Zhang X., Wen S., Hu S., Zhang L., Liu L. (2010); J. Rare Earth, Vol. 28, No. 3, p.333.

Google Scholar

[14] E.B. Stucchi, S.L. Scapari, M.A. Coutodossantos and S.R.A. Leite (1988); J. Alloys Compd. 275, 89.

Google Scholar

[15] Y. Nageno, H. Takebe, K. Morinaga, T. Izumitani (1994); J. Non-Cryst. Solids 169, 288.

Google Scholar