Effect of CaO on Barium Zinc Tantalate (BZT) Dielectric Properties

Article Preview

Abstract:

The effect of CaO on microstructure and dielectric properties of Ba (Zn1/3Ta2/3)O3 (BZT) ceramics was investigated. The addition of CaO disturbed the 1:2 ordering to 1:1 ordering structure of BZT ceramic. The average grain size significantly increased with the addition of CaO and formed a more compacted structure. The relative density increased with the addition of a small amount of CaO, but it decreased when the CaO content was increased. The dielectric constant (ɛr) value of the BZT significantly improved with the addition of the CaO for the specimens sintered at 1250°C and it could be explained by the increased of the relative density. However, for the specimens sintered at 1300°C, the dielectric constant value decreased with the addition of CaO which is attributed to the decrease of the relative density. The tan δ of the CaO doped with BZT ceramics is lower than pure BZT ceramics, and decreases as the CaO content increases. Meanwhile, for the percentage of bandwidth (%BW) it is shown that the best result is when it is doped with 0.5 mol% CaO and sintered at 1250°C. The best microwave dielectric properties obtained are ɛr =70.44, tan δ = 0.025 which occur for the 0.5 mol% doped CaO and when sintered at 1250°C/4 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-450

Citation:

Online since:

December 2013

Authors:

Export:

Price:

* - Corresponding Author

[1] H. M. Shirey., Low temperature synthesis of the microwave dielectric material, Barium Magnesium Tantalate.

Google Scholar

[2] M.T. Sebastian (2008) Dielectric Materials for Wireless Communication. Elsevier Ltd.

Google Scholar

[3] P. K. Davies, J. Tong, T. Nega., Effect of ordering induced domain boundaries on low loss Ba(Zn1/3Ta2/3)O3 BaZrO3 perovskite microwave dielectrics, Journal America Ceramic Society, 80(1997)1727-40.

DOI: 10.1111/j.1151-2916.1997.tb03046.x

Google Scholar

[4] M. H. Kim, S. Nahm, W. S. Lee, M. J. Yoo, J. C. Park, and H. J. Lee. Effect of microstructure on microwave dielectric properties of Al2O3 added Ba(Zn1/3Ta2/3)O3 ceramics. Japan Journal Application Physic, 43(2004)1438–1441.

DOI: 10.1111/j.1151-2916.2002.tb00060.x

Google Scholar

[5] J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, and H. -M. Park. Microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 with ZrO2 addition. Journal America Ceramic Society, 85(2002)165–168.

DOI: 10.1111/j.1151-2916.2002.tb00060.x

Google Scholar

[6] M. H. Kim, S. Nahm, W. S Lee, M. J. Yoo, N. G. Gang, and H. -J. Lee. Structural variation and microwave dielectric properties of TiO2 added Ba(Zn1/3Ta2/3)O3. Journal of the European Ceramic Society, 24(2004)3547–3552.

DOI: 10.1016/j.jeurceramsoc.2003.12.005

Google Scholar

[7] H. K. Kim, B. J. Kim, S. Nahm, W. S. Lee, M. J. Yoo, N. K. Kang, H. J. Lee, Y. S. Kim, and S. Y. Ryon. Microstructure and microwave dielectric properties of SnO2 added Ba(Zn1/3Ta2/3)O3 ceramics. Japan Journal Application Physic, 43(2004)4259–4262.

DOI: 10.1016/j.jeurceramsoc.2003.12.005

Google Scholar

[8] J.S. Kim, J. W. Kim, C.I. Cheon, Y. S. Kim, S. Nahm, J.D. Byun. Effect of chemical element doping and sintering atmosphere on the microwave dielectric properties of barium zinc tantalates. Journal of the European Ceramic Society, 21(2001).

DOI: 10.1016/s0955-2219(01)00323-5

Google Scholar

[9] W. Cai, C. Fu, J. Gao, X. Deng. Dielectric properties, microstructure and diffuse transition of Al-doped Ba(Zr0. 2Ti0. 8)O3 ceramics. Journal Material Science. 10. 1007/s10854-009-9995 (2009).

DOI: 10.1007/s10854-009-9995-z

Google Scholar

[10] M. R. Varma, M. T. Sebastian. Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. Journal of the European Ceramic Society 27 (2007) 2827–2833.

DOI: 10.1016/j.jeurceramsoc.2006.11.014

Google Scholar

[11] Z. Peng, H. Wang, X. Yao. Dielectric resonator antennas using high permittivity ceramics. Ceramics International, 30 (2004) 1211–1214.

DOI: 10.1016/j.ceramint.2003.12.079

Google Scholar