PEG Decorated Glycine Capped Mn-Ferrite Nanoparticles Synthesized by Co-Precipitation Method for Biomedical Application

Article Preview

Abstract:

Our goal is to develop methoxy poly (ethylene glycol) (m-PEG) decorated, glycine capped magnetic nanoparticles (MNPs) with proper physicochemical characteristics including particle size and magnetic property. MNP were synthesized by a biocompatible chemical co-precipitation of Mn2+ and Fe3+ in a sodium hydroxide solution. In order to covalently modify nanoparticles surface by previously prepared m-PEG aldehyde, glycine was used as linker. X-ray diffraction analysis showed successful formation of pure nanocrystalline single phase of Mn-Ferrite and FT-IR spectroscopy approved that m-PEG and glycine were covalently bound to nanoparticles surface. Particle size study showed significant change after modification. In addition, the Vibrating sample magnetometry was done for measuring the magnetic properties (Ms: 52 emu/g) and showing the superparamagnetism behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-278

Citation:

Online since:

November 2013

Export:

Price:

* - Corresponding Author

[1] C. Chouly, D. Pouliquen, L. Lucet, J. J. Jeune, P. Jallet, development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution, J. Microencapsulation, 13 (1996) 245-255.

DOI: 10.3109/02652049609026013

Google Scholar

[2] A. Kumar Gupta, S. Wells, Surface-modified superparamagnetic nanopartciles for drug delivery: prepration, characterization, and cytotoxicity studies, IEEE TRANSACTIONS ON NANOBIOMEDICINE, 3 (2004).

Google Scholar

[3] Y. w. Jun, J.H. Lee, J. Cheon, Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging, Angew. Chem. Int. Ed. 47(2008) 5122 – 5135.

DOI: 10.1002/anie.200701674

Google Scholar

[4] J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao,F. Gao, Q. Gong, B. Song , X. Shuai, H. Ai , Z. Gu, Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging, Bio 30 (2009) 2919–2928.

DOI: 10.1016/j.biomaterials.2009.02.001

Google Scholar

[5] R. Soleimani, M. Soleimani, M.G. Godarzi, Preparation of Soft Manganese Ferrite and Inventional of its Magnetic Properties and Mn 55 Nuclear Magnetic Resonance, JOFE 30 (2011) 338–341.

DOI: 10.1007/s10894-011-9379-2

Google Scholar

[6] I. Francolini, M. Palombo, G. Casini, L. D'Ilario, A. Martinelli, V. Rinaldelli, A. Piozzi, Novel manganese–ferrite nanocomposites for targeted delivery of anticancer drugs, JCR 148 (2010) e57–e73.

DOI: 10.1016/j.jconrel.2010.07.021

Google Scholar

[7] Z. Ma, H. Liu, Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine, China Particuology 5 (2007) 1–10.

DOI: 10.1016/j.cpart.2006.11.001

Google Scholar

[8] O. Veiseh, J. W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug deliveryand imaging, Adv Drug Deliv Rev 62 (2010) 284–304.

DOI: 10.1016/j.addr.2009.11.002

Google Scholar

[9] B. Feng, R.Y. Hong L.S. Wang, L. Guo, H.Z. Li, J. Ding, Y. Zheng, D.G. Wei, Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging, Colloid Surf. A-Physicochem. Eng. Asp. , 328 (2008) 52–59.

DOI: 10.1016/j.colsurfa.2008.06.024

Google Scholar

[10] C. Yue-Jian, T. juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, Ge. Liang, Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent, Drug Dev Ind Pharm, 36(10) 2010 1235–1244.

DOI: 10.3109/03639041003710151

Google Scholar

[11] I. Elahi, R. Zahira, K. Mehmood, A. Jamil, N. Amin, Co-precipitation synthesis, physical and magnetic properties of manganese ferrite powder, AJPAC, 6(1) 2011 1-5.

Google Scholar

[12] V.I. Shubayev, T.R. Pisanic , Su. Jin, Magnetic nanoparticles for theragnostics, Adv Drug Deliv Rev, 6 (2009) 467-477.

DOI: 10.1016/j.addr.2009.03.007

Google Scholar

[13] Y. Z, Zh. C, P. Q, Yu. L, A series of novel chitosan derivatives: synthesise, characterization and micellar solubilization of paclitaxel, Carbohyd Polyme, 68(4) 2007 781-92.

Google Scholar

[14] S. abbasi, G.H. Yousefi, S. Mohammadi-Samani, Doctora Thesis In Partial Fullfillment of the Requirement for Degree of Pharmacy Doctor(Pharm. D), Hydrophobically Modified Pegylated Chitosan for Encapsulation of Paclitaxel, (2012).

Google Scholar

[15] A. Masoudi, H.R. Madaah Hosseini, M. A. Shokrgozar,R. Ahmadi, M.A. Oghabian, The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent,  Int. J. Pharm., 433 (2012).

DOI: 10.1016/j.ijpharm.2012.04.080

Google Scholar

[16] N. M. Deraz, A. Alarifi, Controlled Synthesis, Physicochemical and Magnetic Properties of Nano-Crystalline Mn Ferrite System, Int. J. Electrochem. Sci., 7 (2012) 5534 – 5543.

Google Scholar

[17] A. Yang, C. N. Chinnasamy, J. M. Greneche2, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria ,V. G. Harris, Enhanced N´eel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion, Nano. , 20 (2009).

DOI: 10.1088/0957-4484/20/18/185704

Google Scholar

[18] G. Fischer, X. Cao,  N. Cox,  M. Francis , The FT-IR spectra of glycine and glycylglycine zwitterions isolated in alkali halide matrices,  Chem. Phys., 313 (2005) 39-49.

DOI: 10.1016/j.chemphys.2004.12.011

Google Scholar

[19] C. S.S.R. Kumar , F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv Drug Deliv Rev 63 (2011) 789–808.

DOI: 10.1016/j.addr.2011.03.008

Google Scholar

[20] R. Justin Joseyphus, A. Narayanasamy, B. Jeyadevan, K. Shinoda , K. Tohji, Superparamagnetic Particle Size Limit of Mn-Zn Ferrite Nanoparticles Synthesised Through Aqueous Method.

DOI: 10.1063/1.2207067

Google Scholar

[21] J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering, Pharmacological Research 62 (2010) 144–149.

DOI: 10.1016/j.phrs.2010.01.014

Google Scholar

[22] T.K. Jain, J. Richey, M. Strand, D.L. Leslie-Pelecky , C.A. Flask, V. Labhasetwar, Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Bio. , 29 (2008) 4012–4021.

DOI: 10.1016/j.biomaterials.2008.07.004

Google Scholar