Bio-Encapsulation for the Immune-Protection of Therapeutic Cells

Article Preview

Abstract:

The design of new technologies for treatment of human disorders is a complex and difficult task. The aim of this article is to explore state of art discussion of various techniques and materials involve in cell encapsulations. Encapsulation of cells within semi-permeable polymer shells or beads is a potentially powerful tool, and has long been explored as a promising approach for the treatment of several human diseases such as lysosomal storage disease (LSD), neurological disorders, Parkinsons disease, dwarfism, hemophilia, cancer and diabetes using immune-isolation gene therapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-39

Citation:

Online since:

September 2013

Export:

Price:

[1] J. Lederberg, Experimental genetics and human evaluation, Am. Nat. 100 (1966) 519-531.

Google Scholar

[2] E.I. Tatum, Molecular Biology, Nucleic Acids and the Future of Medicine, in: C.E. Lyght, (Ed.), Reflection on Research and the Future of Medicine, McGraw-Hill, New York. 1967, pp.31-49.

Google Scholar

[3] W.F. Anderson, Human Gene therapy: the initial concepts, Pediatrics News. 15 (1968) 1-29.

Google Scholar

[4] B. Breyer, W. Jiang, H. Cheng, L. Zhou, R. Paul, T. Feng, T.C. He, Adenoviral vector-mediated gene transfer for human gene therapy, Curr. Gene Ther. 1 (2001) 149-162.

DOI: 10.2174/1566523013348689

Google Scholar

[5] O. Greco, S.D. Scott, B. Marples, G. U. Dachs, Cancer gene therapy: delivery, delivery, delivery, Front. Biosci. 7 (2002) 1516-1524.

DOI: 10.2741/a731

Google Scholar

[6] M. Battaglia, Potential T regulatory cell therapy in transplantation: how far have we come and how far can we go?, Transplant Int. 23 (2010) 761-770.

DOI: 10.1111/j.1432-2277.2010.01127.x

Google Scholar

[7] P.D. Wadhwa, S.P. Zielske, J.C. Roth, C.B. Ballas, J.E. Bowman, S.L. Gerson, Cancer Gene Therapy: Scientific Basis, Annu. Rev. Med. 53 (2002) 437-452.

DOI: 10.1146/annurev.med.53.082901.104039

Google Scholar

[8] A. Goren, N. Dahan, E. Goren, L. Baruch, M. Machluf, Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy, FASEB J. 24 (2010) 122-131.

DOI: 10.1096/fj.09-131888

Google Scholar

[9] P. Dandoy, C.F. Meunier, G. Leroux, V. Voisin, L. Giordano, N. Caron, C. Michiels, B.L, Su, A Hybrid Assembly by Encapsulation of Human Cells within Mineralised Beads for Cell Therapy, PLoS ONE 8(1) (2013) 1-8.

DOI: 10.1371/journal.pone.0054683

Google Scholar

[10] R.P. Lanza, J.L. Hayes, W.L. Chick, Encapsulated Cell Technology, Nat. Biotechnol. 14 (1996) 1107-1111.

DOI: 10.1038/nbt0996-1107

Google Scholar

[11] J.P. Stegemann, M.V. Sefton, Video Analysis of Submerged Jet Microencapsulation Using HRMA-MMA. Can. J. Chem. Engg. 74 (1996) 518-525.

DOI: 10.1002/cjce.5450740412

Google Scholar

[12] F. Svec, P. Gemeiner, Engineering Aspects of Carriers for Immobilized Biocatalysts. Biotechnol. Gen. Engg. Rev. 13 (1995) 151-172.

Google Scholar

[13] R.R. Nair, P Demarche, S.N. Agathos, Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micro pollutants in wastewater, New Biotechnol. (2013) (In press).

DOI: 10.1016/j.nbt.2012.12.004

Google Scholar

[14] S.D. Koker, R. Hoogenboom, B.G. De Geest, Polymeric multilayer capsules for drug delivery, Chem. Soc. Rev. 41 (2012) 2867-2884.

DOI: 10.1039/c2cs15296g

Google Scholar

[15] S. Mignani, S.E. Kazzouli, M. Bousmina, J.-P. Majoral, Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview, Adv. Drug Deliv. Rev. (2013) (In Press).

DOI: 10.1016/j.addr.2013.01.001

Google Scholar

[16] T.M.S. Chang, Semipermeable microcapsules, Science 146 (1964) 524-525.

Google Scholar

[17] T.M.S. Chang, F.C. Maclntosh, S.G. Mason, Semipermeable Microcapsules I: Preparation and Properties, Can. J. Physiol. Pharmacol. 44(1) (1966) 115-128.

DOI: 10.1139/y66-013

Google Scholar

[18] D.J.V. Windt, R. Bottino, G. Kumar, M. Willkstrom, H. Hara, M. Ezzelarab, B. Ekser, C. Phelps, N. Murase, A, Casu, D. Ayares, F.G. Lakkis, M. Trucco, D.K.C. Cooper, Clinical Islet Xenotransplantations. How close are we?, Diabetes 61 (2012) 3046-3055.

DOI: 10.2337/db12-0033

Google Scholar

[19] S.G. Piao, S.W. Lim, K.C. Doh, B.H. Chung, C.W. Yang, Drug Interaction Between Cyclosporine and mTOR Inhibitors in Experimental Model of Chronic Cyclosporine Nephrotoxicity and Pancreatic Islet Dysfunction, Transplantation 94 (2012) 454-456.

DOI: 10.1097/00007890-201211271-00861

Google Scholar

[20] J.C. Cohen, J.D. Horton, H.H. Hobbs, Human Fatty Liver Disease: Old Questions and New Insights, Science 332 (2011) 1519-1523.

DOI: 10.1126/science.1204265

Google Scholar

[21] F. Soldner, J. Laganière, A.W. Cheng, D. Hockemeyer, Q. Gao, R. Alagappan, V. Khurana, L.I. Golbe, R.H. Myers, S. Lindquist, L. Zhang, D. Guschin, L.K. Fong, B. J. Vu, X. Meng, F.D. Urnov, E.J. Rebar, P.D. Gregory, H. S. Zhang, R. Jaenisch, Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations, Cell 146 (2011) 318-331.

DOI: 10.1016/j.cell.2011.06.019

Google Scholar

[22] G. Hortelano, P.L. Chang, Gene therapy for hemophilia, Artif. Cells Blood Substit. Immobil. Biotechnol. 28 (2000) 1-24.

Google Scholar

[23] G. Orive, J.L. Pedraz, Highlights and Trends in Cell Encapsulation, Adv. Exp. Med. Biol. 670 (2010) 1-4.

Google Scholar

[24] P.M. Klinge, K. Harmening, M.C. Miller, A. Heile, C. Wallrapp, P. Geigle, T. Brinker, Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer's disease, Neurosci. Lett. 497 (2011) 6-10.

DOI: 10.1016/j.neulet.2011.03.092

Google Scholar

[25] M. Schweizer, O.-W. Merten, Large-Scale Production Means for the Manufacturing of Lentiviral Vectors, Curr. Gene Ther. 10 (2010) 474-486.

DOI: 10.2174/156652310793797748

Google Scholar

[26] M.E. Pueyo, S. Darquy, C. Arbet- Engels, V. Poitout, S. Dimaria, M.N. Gangnerau, G. Reach, A method for obtaining monodispersed cells from isolated porcine islets of Langerhans, Int. J. Artif. Org. 18 (1995) 34-38.

DOI: 10.1177/039139889501800108

Google Scholar

[27] S. Loty, J.M. Sautier, C. Loty, H. Boulekbache, T. Kokubo, N. Forest, Cartilage formation by fetal-rat chondrocytes cultured in alginate beads - a proposed model for investigating tissue-biomaterial interactions, J. Biomed. Mater. Res. 42 (1998) 213-222.

DOI: 10.1002/(sici)1097-4636(199811)42:2<213::aid-jbm6>3.0.co;2-s

Google Scholar

[28] H. Takbatake, N. Koide, T. Tsuji, Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system, Artif. Organs 15 (1991) 474-480.

Google Scholar

[29] M.G. Hollingshead, M.C. Alley, R.F. Camalier, B.J. Abbott, J.G. Mayo, L. Malspeis, M.R. Grever, In vivo cultivation of tumour cells in hollow fibres, Life Sci. 57 (1995) 131-141.

DOI: 10.1016/0024-3205(95)00254-4

Google Scholar

[30] C.L. Ross, C. Booth, B. Sanders, P. Babbar, C. Bergman, T. Soker, S. Sittadjody, M. Salvatori, Y. Al-Shraideh, R.J. Stratta, G. Orlando, Regeneration and bioengineering of transplantable abdominal organs: current status and future challenges, Exp. Opin. Biol. Ther. 13 (2013) 103-113.

DOI: 10.1517/14712598.2013.732063

Google Scholar

[31] E.G. Popa, M.E. Gomes, R.L. Reis, Cell Delivery Systems Using Alginate–Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications, Biomacromolecules 12 (2011) 3952-3961.

DOI: 10.1021/bm200965x

Google Scholar

[32] V. Bisceglie, The cytology of tumor cells, Ztschr. Krebsforsch 40 (1933) 122-123.

Google Scholar

[33] F. Lim, A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas, Science 210 (1980) 908-910.

DOI: 10.1126/science.6776628

Google Scholar

[34] S. Prakash, T.M.S. Chang, Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats, Nat. Med. 2 (1996) 883-887.

DOI: 10.1038/nm0896-883

Google Scholar

[35] Y.L. Sun, X.J. Ma, D.B. Zhou, I. Vacek, A.M. Sun, Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression, J. Clin. Invest. 98 (1996) 1417-1422.

DOI: 10.1172/jci118929

Google Scholar

[36] C. Hasse, G. Klock, A. Schlosser, U. Zimmermann, M. Rothmund, Parathyroid allotransplantation without immunosuppression, Lancet 350 (1997) 1296-1297.

DOI: 10.1016/s0140-6736(05)62473-7

Google Scholar

[37] M. Lohr, A. Hoffmeyer, J.C. Kroger, M. Freund, J. Hain, A. Holle, P. Karle, W.T. Knofel, S. Liebe, P. Muller, H. Nizze, R.M. Saller, T. Wagner, K. Hauenstein, W.H. Genzburg, B. Salmons, Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma, Lancet 357 (2001) 1591-1592.

DOI: 10.1016/s0140-6736(00)04749-8

Google Scholar

[38] A. Dove, Cell-based therapies go live, Nat. Biotechnol. 20 (2002) 339-343.

DOI: 10.1038/nbt0402-339

Google Scholar

[39] A. Murua, A. Portero, G. Orive, R.M. Hernandez, M. de Castro, J.L. Perdraz, Cell microencapsulation technology: towards clinical application, J. Control. Rel. 132 (2008) 76-83.

DOI: 10.1016/j.jconrel.2008.08.010

Google Scholar

[40] H. Zimmermann, F. Ehrhart, D. Zimmermann, K. Muller, A.K. Globa, M. Behringer, P.J. Feilen, P. Gessner, G. Zimmermann, S.G. Shirley, M.M. Weber, J. Metze, U. Zimmermann, Hydrogel-based encapsulation of biological functional tissue: fundamentals, technologies and applications, Appl. Phys. A. Mater. Sci. Pros. 89 (2007) 909-922.

DOI: 10.1007/s00339-007-4270-8

Google Scholar

[41] H. Uludag, P. De Vos, P.A. Tresco, Technology of mammalian cell encapsulation, Adv. Drug Deliv. Rev. 42 (2000) 29-64.

DOI: 10.1016/s0169-409x(00)00053-3

Google Scholar

[42] Z. Fang, B. Bhandari, Encapsulation of polyphenols – A review, Trends Food Sci. Technol. 21 (2010) 510-523.

Google Scholar

[43] K. Redenbaugh, B.D. Paasch, J.W. Nichol, M.E. Kossler, P.R. Viss, K.A. Walker, Somatic seeds: encapsulation of asexual plant embryos, Biotechnol. 4 (1986) 797-801.

DOI: 10.1038/nbt0986-797

Google Scholar

[44] C.J. King, Spray Drying Food Liquids and the Retention of Volatiles, Chem. Eng. Prog. 6 (1990) 33-39.

Google Scholar

[45] H. Dautzenberg, G. Arnold, B. Lukanoff, U. Eckert, B. Tiersc, Polyelectrolyte complex formation at the interface of solutions, Prog. Colloid Polym. Sci. 101 (1996) 149-156.

DOI: 10.1007/bfb0114461

Google Scholar

[46] K. Seki, D.A. Tirrell, pH-Dependent Complexation of Poly(acrylic Acid) Derivatives with Phospholipid Vesicle Membranes, Macromolecules 17 (1984) 1692-1698.

DOI: 10.1021/ma00139a009

Google Scholar

[47] J. Lukas, V. Palaeckova, J. Mokry, J. Karbanova, B. Dvorankova, Hydrogels for encapsulation of mammalian cells, Macromol. Symp. 172 (2001) 157-165.

Google Scholar

[48] A.I. Desmangles, O. Jordan, F. Marquis- Weible, Interfacial photopolymerization of beta-cell clusters: approaches to reduce coating thickness using ionic and lipophilic dyes, Biotechnol. Bioeng. 72 (2001) 634-641.

DOI: 10.1002/1097-0290(20010320)72:6<634::aid-bit1029>3.0.co;2-j

Google Scholar

[49] G. Decher, J.D. Hong, Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles, Makromol. Chem. Macromol. Symp. 46 (1991) 321-327.

DOI: 10.1002/masy.19910460145

Google Scholar

[50] S.A. Sukhishvili, Responsive polymer films and capsules via layer-by-layer assembly, Curr. Opin. Colloid Interface Sci. 10 (2005) 37-44.

DOI: 10.1016/j.cocis.2005.05.001

Google Scholar

[51] S.A. Sukhishvili, E. Kharlampieva, V. Izumrudov, Where Polyelectrolyte Multilayers and Polyelectrolyte Complexes Meet, Macromolecules 39 (2006) 8873-8881.

DOI: 10.1021/ma061617p

Google Scholar

[52] G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 277 (1997) 1232-1237.

DOI: 10.1126/science.277.5330.1232

Google Scholar

[53] J. Choi, M.F. Rubner, Influence of the degree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules 38 (2005) 116-124.

DOI: 10.1021/ma048596o

Google Scholar

[54] E. Tsuchida, K. Abe, Interactions between macromolecules in solution and intermacromolecular complexes, Adv. Polym. Sci. 45 (1982) 1-119.

DOI: 10.1007/bfb0017549

Google Scholar

[55] V.A. Kabanov, A.B. Zezin, V.B. Rogacheva, Z.G. Gulyaeva, M.F. Zansochova, J.G.H. Joosten, J. Brackman, Interaction of Astramol poly(propyleneimine) dendrimers with linear polyanions, Macromolecules 32 (1999) 1904-1909.

DOI: 10.1021/ma9716443

Google Scholar

[56] A. Vanerek, T.G.M. van de Ven, Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin, Colloids Surf Part A: Physicochem. Eng. Aspects 273 (2006) 55-62.

DOI: 10.1016/j.colsurfa.2005.08.005

Google Scholar

[57] A. Martinez- Ruvalcaba, E. Chornet, D. Rodrigue, Viscoelastic properties of dispersedchitosan/xanthan hydrogels, Carbohydr. Polym. 67 (2007) 586- 595.

DOI: 10.1016/j.carbpol.2006.06.033

Google Scholar

[58] D. Paneva, L. Mespouille, N. Manolova, P. Degee, I. Rashkov, P. Dubois, Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate]; and poly(2-acrylamido-2-methylpropane sodium sulfonate), J. Polym. Sci. Part A: Polym. Chem. 44 (2006) 5468-5479.

DOI: 10.1002/pola.21594

Google Scholar

[59] G.E. Fredheim, B.E. Christensen, Polyelectrolyte complexes: Interactions between lignosulfonate and chitosan, Biomacromolecules 4 (2003) 232-239.

DOI: 10.1021/bm020091n

Google Scholar

[60] M.K. Vogel, R.A. Cross, H.J. Bixler, Medical uses for polyelectrolyte complexes, J. Macromol. Sci. Chem. A 4 (1970) 675- 692.

Google Scholar

[61] A.F. Thunemann, M. Muller, H. Dautzenberg, J-F. Joanny, H. Lowen, Polyelectrolyte complexes, Adv. Polym. Sci. 166 (2004) 113-171.

Google Scholar

[62] D.J. Burgess, Practical analysis of complex coacervate systems, J. Colloid Interface Sci. 140 (1990) 227-238.

DOI: 10.1016/0021-9797(90)90338-o

Google Scholar

[63] L. Piculell, B. Lindman, Association and segregation in aqueous polymer/polymer, polymer/ surfactant and surfactant/surfactant mixtures – similarities and differences, Adv. Colloid Interface Sci. 41 (1992) 149-178.

DOI: 10.1016/0001-8686(92)80011-l

Google Scholar

[64] A.S. Prata, M.H. Zanin, M.I. Re, C.R. Grosso, Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil, Colloid Surf. Sci. B 67 (2008) 171-178.

DOI: 10.1016/j.colsurfb.2008.08.014

Google Scholar

[65] Y. Wen, P.L. Dubin, Potentiometric Studies of the Interaction of Bovine Serum Albumin with Poly(diallyldimethylammonium chloride), Macromolecules 30 (1997) 7856-7861.

DOI: 10.1021/ma971152q

Google Scholar

[66] R. Arshady, Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation, Polym. Eng. Sci. 30 (1990) 905-914.

DOI: 10.1002/pen.760301505

Google Scholar

[67] K. Kaibara, T. Okazaki, H.B. Bohidar, P.L. Dubin, pH-Induced Coacervation of Bovine Serum Albumin and Cationic Polyelectrolytes, Biomacromolecules 1 (2000) 100-107.

DOI: 10.1021/bm990006k

Google Scholar

[68] A. Prokop, D. Hunkeler, S. DiMari, M. Haralson, T.G. Wang, Water soluble polymers for immunoisolations I: complex coacervation and cytotoxicity, Adv. Polym. Sci. 136 (1998) 1-51.

DOI: 10.1007/3-540-69682-2_1

Google Scholar

[69] H. Miyazaki, K. Kataoka, Preparation of polyacrylamide derivatives showing thermoreversible coacervate and their potential application to two phase separation processes, Polymer 37 (1996) 681-685.

DOI: 10.1016/0032-3861(96)83156-9

Google Scholar

[70] A.K. Andrianov, J. Chen, L.G. Payne, Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions, Biomaterials 19 (1998) 109-115.

DOI: 10.1016/s0142-9612(97)00227-5

Google Scholar

[71] A. Vanerek, T.G.M. Van de Ven, Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin, Colloids and Surfaces A 273 (2006) 55-62.

DOI: 10.1016/j.colsurfa.2005.08.005

Google Scholar

[72] L.A. Luzzi, R.I. Gerraughty, Effects of selected variables on the microencapsulation of solids, J. Pharm Sci., 56 (1967) 634-638.

DOI: 10.1002/jps.2600560519

Google Scholar

[73] D.J. Burgess, O.N. Singh, Spontaneous formation of small sized albumin/acacia coacervate particles, J. Pharm. Pharmacol. 45 (1993) 586-591.

DOI: 10.1111/j.2042-7158.1993.tb05657.x

Google Scholar

[74] M. Peirone, C.J.D. Ross, G. Hortelano, J.L. Brash, P.L. Chang, Encapsulation of various recombinant mammalian cell types in different alginate microcapsules, J. Biomed Mater. Res. 42 (1998) 587-596.

DOI: 10.1002/(sici)1097-4636(19981215)42:4<587::aid-jbm15>3.0.co;2-x

Google Scholar

[75] O. Smidsrod, G. Skjak-Braek, Alginate as immobilization matrix for cells, Trends Biotechnol. 8 (1990) 71-78.

Google Scholar

[76] T. Zekorn, U. Siebers, A. Horcher, R. Schnettler, G. Klock, R. G. Bretzel, U. Zimmerman, K. Federlin, Barium-alginate beads for immunoisolated transplantation of islets of Langerhans, Transplant. Proc. 24 (1992) 937-939.

DOI: 10.1007/bf00572552

Google Scholar

[77] H. Zimmermann, D. Zimmermann, R. Reuss, Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation, J. Mater. Sci., Mater. Med. 16 (2005) 491-501.

DOI: 10.1007/s10856-005-0523-2

Google Scholar

[78] B. Thu, P. Bruheim, T. Espevik, O. Smidsrod, P. Soon-Shiong, G. Skjak-Braek, Alginate polycation microcapsules, Biomaterials 17 (1996) 1031-1040.

DOI: 10.1016/0142-9612(96)84680-1

Google Scholar

[79] R.P. Lanza, W.M. Kuhtreiber, D. Ecker, J.K. Staruk, W.L. Chick, Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microcapsules, Transplantation 59 (1995) 1377-1384.

DOI: 10.1097/00007890-199505270-00003

Google Scholar

[80] Y.A. Mørch, I. Donati, B.L. Strand, G. Skjåk-Bræk, Effect of Ca2+, Ba2+ and Sr2+ on alginate microbeads, Biomacromolecules 7 (2006) 1471-1480.

DOI: 10.1021/bm060010d

Google Scholar

[81] T. Chandy, D.L. Mooradian, G.H.R. Rao, Chitosan/polyethylene glycol–alginate microcapsules for oral delivery of hirudin, J. Appl. Polym. Sci. 70 (1998) 2143-2153.

DOI: 10.1002/(sici)1097-4628(19981212)70:11<2143::aid-app7>3.0.co;2-l

Google Scholar

[82] O. Gaserod, O. Smidsrod, G. Skjak-Braek, Microcapsules of alginate-chitosan - I - A quantitative study of the interaction between alginate and chitosan, Biomaterials 19 (1998) 1815-1825.

DOI: 10.1016/s0142-9612(98)00073-8

Google Scholar

[83] C.M. Bunger, C. Gerlach, T. Freier, K.P. Schmitz, M. Pilz, C. Werner, L. Jonas, W. Schareck, U.T. Hopt, P.J. De Vos, Biocompatibility and surface structure of chemically modified immunoisolating alginate-PLL capsules, J. Biomed. Mater. Res. 67 (2003) 1219-1227.

DOI: 10.1002/jbm.a.10094

Google Scholar

[84] T. Haque, H. Chen, W. Ouyang, C. Martini, B. Lawuyi, A.M. Urbanska, S. Prakash, Superior Cell Delivery Features of Poly(ethylene glycol) Incorporated Alginate, Chitosan, and Poly-L-lysine Microcapsules, Mol. Pharmaceutics 2 (2005) 29-36.

DOI: 10.1021/mp049901v

Google Scholar

[85] M.D. Darrabie, Jr. W.F. Kendall, E.C. Opara, Characteristics of Poly-L-Ornithine-coated alginate microcapsules, Biomaterials 26 (2005) 6846-6852.

DOI: 10.1016/j.biomaterials.2005.05.009

Google Scholar

[86] R. Calafiore, G. Basta, C. Boselli, A. Bufalari, G.M. Giustozzi, G. Luca, C. Tortoioli, P. Brunetti, Effects of alginate polyaminoacidic coherent microcapsule transplantation in adult-pigs, Transplant. Proc, 29 (1997) 2126-2127.

DOI: 10.1016/s0041-1345(97)00260-1

Google Scholar

[87] Y.J. Wang, Development of new polycations for cell encapsulation with alginate, Mater. Sci. Eng. C 13 (2000) 59-63.

Google Scholar

[88] S. Schneider, P.J. Feilen, V. Slotty, D. Kampfner, S. Preuss, S. Berger, J. Beyer, R. Pommersheim, Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets, Biomaterials 22 (2001) 1961-1970.

DOI: 10.1016/s0142-9612(00)00380-x

Google Scholar

[89] D. Dufrane, M. Van Steenberghe, R.M. Goebbels, A. Saliez, Y. Guiot, P. Gianello, The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats, Biomaterials 27 (2006) 3201-3208.

DOI: 10.1016/j.biomaterials.2006.01.028

Google Scholar

[90] M. Dvir-Ginzberg, A. Konson, S. Cohen, R. Agbaria, Entrapment of retroviral vector producer cells in three-dimensional alginate scaffolds for potential use in cancer gene therapy, J. Biomed. Mater. Res. B Appl. Biomater. 80 (2007) 59-66.

DOI: 10.1002/jbm.b.30568

Google Scholar

[91] X. Cai, Y. Lin, G. Ou, E. Luo, Y. Man, Q. Yuan, P. Gong, Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system, Cell Biol. Int. 31 (2007) 776-783.

DOI: 10.1016/j.cellbi.2007.01.011

Google Scholar

[92] S.K. Dean, Y. Yulyana, G. Williams, K.S. Sidhu, B.E. Tuch, Differentiation of encapsulated embryonic stem cells after transplantation, Transplantation 82 (2006) 1175-1184.

DOI: 10.1097/01.tp.0000239518.23354.64

Google Scholar

[93] M.B. Evangelista, S.X. Hsiong, R. Fernandes, P. Sampaio, H.J. Kong, C.C. Barrias, R. Salema, M.A. Barbosa, D.J. Mooney, P.L. Granja, Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix, Biomaterials 28 (2007) 3644-3655.

DOI: 10.1016/j.biomaterials.2007.04.028

Google Scholar

[94] E. Hill, T. Boontheekul, D.J. Mooney, Regulating activation of transplanted cells controls tissue regeneration, Proc. Natl. Acad. Sci. 103 (2006) 2494-2499.

DOI: 10.1073/pnas.0506004103

Google Scholar

[95] Y.A. Morch, I. Donati, B.L. Strand, G. Skjak-Braek, Effect of Ca2+, Ba2+ and Sr2+ on alginate microbeads, Biomacromolecules 8 (2007) 2809-2814.

Google Scholar

[96] A.M. Smith, J.J. Harris, R.M. Shelton, Y. Perrie, 3D culture of bone-derived cells immobilised in alginate following light-triggered gelation, J. Control. Release 119 (2007) 94-101.

DOI: 10.1016/j.jconrel.2007.01.011

Google Scholar

[97] S. Sakai, I. Hashimoto, Y. Ogushi, K. Kawakami, Peroxidase-catalyzed cell encapsulation in subsieve-size capsules of alginate with phenol moieties in water-immiscible fluid dissolving H2O2, Biomacromolecules 8 (2007) 2622-2626.

DOI: 10.1021/bm070300+

Google Scholar

[98] H.F. Ding, R. Liu, B.G. Li, J.R. Lou, K.R. Dai, T.T. Tang, Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules, Biochem. Biophys. Res. Commun. 362 (2007) 923-927.

DOI: 10.1016/j.bbrc.2007.08.094

Google Scholar

[99] A. Murua, M. de Castro, G. Orive, R.M. Hernandez, J.L. Pedraz, In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate-poly-L-lysine-alginate microcapsules, Biomacromolecules 8 (2007) 3302-3307.

DOI: 10.1021/bm070194b

Google Scholar

[100] X. Wang, W. Wang, J. Ma, X. Guo, X. Yu, X. Ma, Proliferation and differentiation of mouse embryonic stem cells in APA microcapsule: A model for studying the interaction between stem cells and their niche, Biotechnol. Prog. 22 (2006) 791-800.

DOI: 10.1021/bp050386n

Google Scholar

[101] J. Dusseault, G. Langlois, M. Meunier, M. Menard, C. Perrault, J.-P. Hallé, The effect of covalent cross-links between the membrane components of microcapsules on the dissemination of encapsulated malignant cells, Biomaterials 29 (2008) 917-924.

DOI: 10.1016/j.biomaterials.2007.10.045

Google Scholar

[102] E.K.F. Yim, A.C.A. Wan, C. Le Visage, I.C. Liao, K.W. Leong, Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold, Biomaterials 27 (2006) 6111- 6122.

DOI: 10.1016/j.biomaterials.2006.07.037

Google Scholar

[103] J.T. Wilson, W. Cui, X. Sun, C. Tucker-Burden, C.J. Weber, E.L. Chaikof, In vivo biocompatibility and stability of a substrate-supported polymerizable membrane-mimetic film, Biomaterials 28 (2007) 609-617.

DOI: 10.1016/j.biomaterials.2006.09.003

Google Scholar

[104] S. Sakai, I. Hashimoto, K. Kawakami, Development of alginate-agarose subsieve-size capsules for subsequent modification with a polyelectrolyte complex membrane, Biochem. Eng. J. 30 (2006) 76-81.

DOI: 10.1016/j.bej.2006.02.003

Google Scholar

[105] E. Marsich, M. Borgogna, I. Donati, P. Mozetic, B.L. Strand, S.G. Salvador, F. Vittur, S. Paoletti, Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation, J. Biomed. Mater. Res. A 84 (2008) 364-376.

DOI: 10.1002/jbm.a.31307

Google Scholar

[106] I. Donati, I.J. Haug, T. Scarpa, M. Borgogna, K.I. Draget, G. Skjak-Braek, S. Paoletti, Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac), Biomacromolecules 8 (2007) 957-962.

DOI: 10.1021/bm060856h

Google Scholar

[107] C.G. Thanos, R. Calafiore, G. Basta, B.E. Bintz, W.J. Bell, J. Hudak, A. Vasconcellos, P. Schneider, S.J.M. Skinner, M. Geaney, P. Tan, R.B. Elliot, M. Tatnell, L. Escobar, H. Qian, E. Mathiowitz, D.F. Emerich, Formulating the alginate-polyornithine biocapsule for prolonged stability: evaluation of composition and manufacturing technique, J. Biomed. Mater. Res. A 83 (2007) 216-224.

DOI: 10.1002/jbm.a.31472

Google Scholar

[108] R.B. Elliot, L. Escobar, P.L.J. Tan, O. Garkavenko, R. Calafiore, P. Basta, A.V. Vasconcellos, D.F. Emerich, C. Thanos, C. Bambra, Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates, [My paper]Transplant. Proc. 37 (2005) 3505-3508.

DOI: 10.1016/j.transproceed.2005.09.038

Google Scholar

[109] J.J. Vallbacka, M.V. Sefton, Vascularization and improved in vivo survival of VEGF-secreting cells microencapsulated in HEMA-MMA, Tissue Eng. 13 (2007) 2259-2269.

DOI: 10.1089/ten.2006.0284

Google Scholar

[110] J. Mokry, J. Karbanova, J. Lukas, V. Paleckova, B. Dvorankova, Biocompatibility of HEMA copolymers designed for treatment of CNS disease with polymer- encapsulated cells, Biotechnol. Prog. 16 (2000) 897-904.

DOI: 10.1021/bp000113m

Google Scholar

[111] M.C. Bano, S. Chen, K.B. Visscher, H.R. Allock, R. Langer, A novel synthetic method for hybridoma cell encapsulation, Biotechnology 9 (1991) 468-471.

DOI: 10.1038/nbt0591-468

Google Scholar

[112] M.V. Sefton, The good, the bad and the obvious, Biomaterials 14 (1993) 1127-1134.

Google Scholar

[113] C.C. Crooks, J.A. Douglas, R.L. Broughton, M.V. Sefton, Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability, J. Biomed. Mater. Res. 24 (1990) 1241-1262.

DOI: 10.1002/jbm.820240908

Google Scholar

[114] I.K. De Scheerder, K.L. Wilczek, E.V. Verbeken, J. Vandorpe, P.N. Lan, E. Schacht, H. De Geest, J. Piessens, Experimental Study of Thrombogenicity and Foreign Body Reaction Induced by Heparin-Coated Coronary Stents, Atheroschlerosis 114 (1995) 105-114.

DOI: 10.1016/0021-9150(94)05472-u

Google Scholar

[115] G. Orive, R.M. Hernandez, A.R. Gascon, M. Igartua, A. Rojas, J.L. Pedraz, Microencapsulation of an anti-VE-cadherin antibody secreting 1B5 hybridoma cells, Biotechnol. Bioeng. 76 (2001) 285-294.

DOI: 10.1002/bit.10050

Google Scholar

[116] Y. Aomatsu, H. Iwata, T. Takagi, Y. Amemiya, H. Nakano, Microencapsulated islets in agarose gel as bioartificial pancrease for discordant xenotransplantation, Transplant. Proc. 24 (1992) 2922-2923.

Google Scholar

[117] C.C. Crooks, J.A. Douglas, R.L. Broughton, M.V. Sefton, Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability, J. Biomed. Mater. Res. 24 (1990) 1241-1262.

DOI: 10.1002/jbm.820240908

Google Scholar

[118] A. Prokop, D. Hunkeler, A.C. Powers, R. Whitesell, T.G. Wang, Water soluble polymers for immunoisolation II: evaluation of multicomponent microencapsulation systems, Adv. Polym. Sci.136 (1998) 53-73.

DOI: 10.1007/3-540-69682-2_2

Google Scholar

[119] S. Prakash, C. Martoni, Toward a new generation of therapeutics, Appl. Biochem. Biotechnol. 128 (2006) 1-21.

Google Scholar

[120] S. Hertzberg, E. Moen, C. Vogelsang, K. Østgaard, Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment, Appl. Microbiol. Biotechnol. 43 (1995) 10-17.

DOI: 10.1007/bf00170615

Google Scholar

[121] A. Prokop, D. Hunkeler, S. Dimari, M.A. Haralson, T.G. Wang, Water Soluble Polymers for Immunoisolation I: Complex Coacervation and Cytotoxicity, Adv. Polym. Sci., 136 (1998) 1-51.

DOI: 10.1007/3-540-69682-2_1

Google Scholar

[122] T. Wang, T. Lacik, M. Brissova, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, A.C. Powers, An encapsulation system for the immunoisolation of pancreatic islets, Nat. Biotechnol. 15 (1997) 358-362.

DOI: 10.1038/nbt0497-358

Google Scholar

[123] T. Chandy, D.L. Mooradian, G.H.R. Rao, Chitosan/polyethylene glycol–alginate microcapsules for oral delivery of hirudin, J. Appl. Polym. Sci. 70 (1998) 2143-2153.

DOI: 10.1002/(sici)1097-4628(19981212)70:11<2143::aid-app7>3.0.co;2-l

Google Scholar

[124] S.H. Yuk, S.H. Cho, B.C. Shin, H.B. Lee, A novel semi-interpenetrating networks system as an absorbent material, Eur. Polym. J. 32 (1996) 101-104.

DOI: 10.1016/0014-3057(95)00101-8

Google Scholar

[125] O. Gaserod, A. Sannes, G. Skjak-Braek, Microcapsules of alginate-chitosan - II A study of capsule stability and permeability, Biomaterials 20 (1999) 773-783.

DOI: 10.1016/s0142-9612(98)00230-0

Google Scholar

[126] K.A. Smeds, M.W. Grinstaff, Photocrosslinkable polysaccharides for in situ hydrogel formation, J. Biomed. Mater. Res. 54 (2001) 115-121.

DOI: 10.1002/1097-4636(200101)54:1<115::aid-jbm14>3.0.co;2-q

Google Scholar

[127] J.A. Hubbell, C.P. Pathak, A.S. Sawhney, N.P. Desai, S.F.A. Hossainy, Gels for encapsulation of biological materials, US Patent 5, 529,914, 1996.

Google Scholar

[128] P. Soon-Shiong, R.A. Heintz, G. Skjak-Braek, Microencapsulation of cells, US Patent 5, 762,959, 1998.

Google Scholar

[129] P. Soon-Shiong, N.P. Desai, P.A. Sandford, R.A. Heintz, S. Sojomihardjo, Crosslinkable polysaccharides, polycations and lipids useful for encapsulation and drug release, US Patent 5, 837,747, 1998.

Google Scholar

[130] A.M. Rokstad, I. Donati, M. Borgogna, J. Oberholzer, B.L. Strand, T. Espevik, G. Skjåk-Braek, Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate, Biomaterials 27 (2006) 4726-4737.

DOI: 10.1016/j.biomaterials.2006.05.011

Google Scholar

[131] M. Wang, R.F. Childs, P.L. Chang, A novel method to enhance the stability of alginate-poly-L-lysine- alginate microcapsules, J. Biomater. Sci. Polym. Edn. 16 (2005) 91-113.

DOI: 10.1163/1568562052843302

Google Scholar

[132] T. Araki, A.P. Hitchcock, F. Shen, P.L. Chang, M. Wang, R.F. Childs, Quantitative chemical mapping of sodium acrylate and N-vinylpyrrolidone enhanced alginate microcapsules, J. Biomater. Sci. Polym. Edn. 16 (2005) 611-627.

DOI: 10.1163/1568562053783687

Google Scholar

[133] J. Dusseault, F.A. Leblond, R. Robitaille, G. Jourdan, J. Tessier, M. Menard, N. Henly, J.-P. Hallé, Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers, Biomaterials 26 (2005) 1515-1522.

DOI: 10.1016/j.biomaterials.2004.05.013

Google Scholar

[134] F.A. Leblond, J.-P. Hallé,. Semi-permeable microcapsule with covalently linked layers and method for producing the same, US Patent 7128931, 2006.

Google Scholar

[135] J. Dusseault, G. Langlois, M.-C. Meunier, M. Menard, C. Perreault, J.-P. Halle, The effect of covalent cross-links between the membrane components of microcapsules on the dissemination of encapsulated malignant cells, Biomaterials 29 (2008) 917-924.

DOI: 10.1016/j.biomaterials.2007.10.045

Google Scholar

[136] M.A.J. Mazumder, F. Shen, N.A.D. Burke, M.A. Potter, H.D.H. Stöver, Self-crosslinking polyelectrolyte for therapeutic cell encapsulation, Biomacromolecules 9 (2008) 2292-2300.

DOI: 10.1021/bm800580c

Google Scholar

[137] F. Shen, M.A.J. Mazumder, N.A.D. Burke, H.D.H. Stöver, M. A. Potter, Mechanically enhanced microcapsules for cellular gene therapy, J. Biomed. Mater. Res. B: Appl. Biomater. 90B (2009) 350-361.

DOI: 10.1002/jbm.b.31292

Google Scholar

[138] M.A.J. Mazumder, N.A.D. Burke, F. Shen, M.A. Potter, H.D.H. Stover, Primary amine based polyelectrolytes for cell encapsulation, (Manuscript in preparation).

Google Scholar

[139] M.A.J. Mazumder, N.A.D. Burke, F. Shen, M.A. Potter, H.D.H. Stover, Core-crosslinked alginate microcapsules for cell encapsulation, Biomacromolecules 10 (2009) 1365-1373.

DOI: 10.1021/bm801330j

Google Scholar