Expression of CP:CBF3-35S:ICE1 Enhances Low Temperature Tolerance in Transgenic Arabidopsis

Article Preview

Abstract:

We have constructed a vector pCAMBIA1300-CP:CBF3-35S:ICE1 and transformed into Arabidopsis. Results of PCR proved that the target genes had integrated into Arabidopsis genome. Transgenic Arabidopsis showed a bit slow growth, earlier flowering, but normal at other phenotype under 22°C with 8 h daily lights. In vitro low temperature stress tests showed that the transgenic lines were survival while the wild type was nearly dead. The transgenic plants also showed an increased proline content, SOD and POD activities under low temperature stress. The phenotype and physical evidence indicated that expression of CP:CBF3-35S:ICE1 under low temperature enhances the cold tolerance in transgenic plants.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

118-121

Citation:

Online since:

August 2013

Keywords:

Export:

Price:

[1] K. Shinozaki and K. Yamaguchi-Shinozaki: Current Opinion in Plant Biology Vol. 3(3) 2000, pp.217-223.

Google Scholar

[2] F. Novillo, J.M. Alonso, J.R. Ecker, and J. Salinas: Proc Natl Acad Sci U S A Vol. 101(11) 2004, pp.3985-3990.

Google Scholar

[3] M.F. Thomashow: Plant Physiol Vol. 154(2) 2010, pp.571-577.

Google Scholar

[4] S.J. Gilmour, A.M. Sebolt, M.P. Salazar, J.D. Everard, and M.F. Thomashow: Plant Physiol Vol. 124(4) 2000, pp.1854-1865.

Google Scholar

[5] K.R. Jaglo, S. Kleff, K.L. Amundsen, X. Zhang, V. Haake, J.Z. Zhang, T. Deits, and M.F. Thomashow: Plant Physiol Vol. 127(3) 2001, pp.910-917.

DOI: 10.1104/pp.010548

Google Scholar

[6] M. Kasuga, S. Miura, K. Shinozaki, and K. Yamaguchi-Shinozaki: Plant and Cell Physiology Vol. 45(3) 2004, pp.346-350.

Google Scholar

[7] D. Al-Abed, P. Madasamy, R. Talla, S. Goldman, and S. Rudrabhatla: Crop Sci. Vol. 47(6) 2007, pp.2390-2402.

DOI: 10.2135/cropsci2006.11.0712

Google Scholar

[8] Q. Liu, M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki: Plant Cell Vol. 10(8) 1998, pp.1391-1406.

DOI: 10.1105/tpc.10.8.1391

Google Scholar

[9] K. Miura, M. Ohta, M. Nakazawa, M. Ono, and P.M. Hasegawa: Plant J Vol. 67(2) 2011, pp.269-279.

Google Scholar

[10] F. Hadi, M. Gilpin, and M.P. Fuller: Plant Physiol Biochem Vol. 49(11) 2011, pp.1323-1332.

Google Scholar

[11] V. Chinnusamy, M. Ohta, S. Kanrar, B.H. Lee, X. Hong, M. Agarwal, and J.K. Zhu: Genes Dev Vol. 17(8) 2003, pp.1043-1054.

DOI: 10.1101/gad.1077503

Google Scholar

[12] W.G. Huang, X. Deng, L.L. Wang, D.J. Xiang, Y. Zhang, and K.D. Yin: Acta Tabacaria Sinica Vol. 14(05) 2008, pp.69-73.

Google Scholar

[13] J.C. Guo, R.J. Duan, X.W. Hu, K.M. Li, and S.P. Fu: Transgenic Res Vol. 19(2) 2010, pp.197-209.

Google Scholar

[14] J. Xiong, L. Zhang, G. Fu, Y. Yang, C. Zhu, and L. Tao: J Plant Res Vol. 125(1) 2012, pp.155-164.

Google Scholar

[15] S. Zhou, W. Hu, X. Deng, Z. Ma, L. Chen, C. Huang, C. Wang, J. Wang, Y. He, G. Yang, and G. He: Plos One Vol. 7(12) 2012, p. e52439.

DOI: 10.1371/journal.pone.0052439

Google Scholar

[16] K.R. Jaglo-Ottosen, S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow: Science Vol. 280(5360) 1998, pp.104-106.

DOI: 10.1126/science.280.5360.104

Google Scholar

[17] M. Kasuga, Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki: Nature Biotechnology Vol. 17(3) 1999, pp.287-291.

DOI: 10.1038/7036

Google Scholar

[18] S. Fowler and M.F. Thomashow: Plant Cell Vol. 14(8) 2002, pp.1675-1690.

Google Scholar

[19] K. Maruyama, Y. Sakuma, M. Kasuga, Y. Ito, M. Seki, H. Goda, Y. Shimada, S. Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki: Plant J Vol. 38(6) 2004, pp.982-993.

DOI: 10.1111/j.1365-313x.2004.02100.x

Google Scholar