The Elaboration of an Iron Aluminium Alloy and the Study of Impact of the Addition Element on its Physical and Mechanical Properties

Article Preview

Abstract:

This work has been undertaken in order to determine the effect of alloying with Ni, Mo and B additions on physical and mechanical properties of FeAl alloys. The structural evolutions and morphological changes alloys were characterized by X. ray diffractometry (XRD), Scanning Electron Microscope (SEM) and an Optical Microscope. Antiphase domain sizes and morphologies are reported and correlations between such ordening phenomena, phase precipitations and mechanical properties (micro hardness at low temperature) are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-215

Citation:

Online since:

April 2013

Export:

Price:

[1] N.S. Stoloff: Iron aluminides: present status and future prospects (Materials Science and engineering, 1998).

Google Scholar

[2] E.J. Minay, R.D. Rawlings and H.B. McShane: Hot extrusion reaction synthesis of iron aluminides (Journal of Materials Processing Technology, 2004).

DOI: 10.1016/j.jmatprotec.2004.04.126

Google Scholar

[3] U. Messerschmidt, M. Bartsch and Ch. Dietzch: The flow stree anomaly in Fe-43at% Al single crystals (Intermetallics, 2006).

DOI: 10.1016/j.intermet.2005.10.009

Google Scholar

[4] S. Chowdhuri, S.S. Jshi, P.K. Rao and N. B, Ballal: Machining aspects of a high carbon Fe3Al alloy (Journal of Materials Processing Technology, 2004).

DOI: 10.1016/j.jmatprotec.2003.12.007

Google Scholar

[5] D. Huang, W.V. Vang, Z.Q. Sun and L. Froyen: Preparation and mechanical properties of large-ingot Fe3Al (Journal of Materials Processing Technology, 2004).

DOI: 10.1016/j.jmatprotec.2003.10.014

Google Scholar

[6] L.M. Pike and C.T. Liu: The effect of vacancies on the environmental yield strength dependence of boron-free and boron-doped Fe-40Al (Intermetallics, 2000).

DOI: 10.1016/s0966-9795(00)00095-9

Google Scholar

[7] R.R. Judkins, U. Daya and S. Rao: Fossil energy applications of intermetallic alloys (Intermetallics, 2000).

Google Scholar

[8] D. Risanti, J. Deges, L. Falat, S. Kobayashi, J. Konrad, M. Palm, A. Schneider and C. Stallybrass: Dependence of the brittle-to-ductile transition temperature (BDTT) on the Al content of Fe–Al alloys (Stein Intermetallics 2005).

DOI: 10.1016/j.intermet.2005.02.007

Google Scholar

[9] F. Moret., R. Baccino, P. Martel and L. Guetaz : Propiétés et applications des alliages intermétalliques B2 FeAl, (Acta Materialia, 1996).

DOI: 10.1051/jp4:1996240

Google Scholar

[10] N.S. Stoloff, C.T. Liu and S.C. Deevi: Emerging applications of intermetallics (Intermetallics, 2000).

DOI: 10.1016/s0966-9795(00)00077-7

Google Scholar

[12] M. Crimp and K. Vedula: Effect of boron on the tensile properties of B2 FeAl (Mat. Sci. Eng, 1986).

Google Scholar

[13] W. Dongmet: the mechanical properties and strain-induced ferromagnetism in B2 structure FeAl single crystals (These Doctorate, University Cincinnati. 2002).

Google Scholar

[14] D. Jordan: the influence of minor alloying additions on material behaviour in FeAl and Ni3Al based intermetallics (These Doctorate, University Cincinnati. 1999).

Google Scholar

[15] A. Schneider, L. Falat, G. Sauthoff and G. Frommeyer: Microstructures and mechanical properties of Fe3Al-based Fe–Al–C alloys (Intermetallics, 2005).

DOI: 10.1016/j.intermet.2005.01.013

Google Scholar

[16] L. Falat, A. Schneider, G. Sauthoff and G. Frommeyer: Mechanical properties of Fe–Al–M0–C (MZTi, V, Nb, Ta) alloys with strengthening carbides and Laves phase (Intermetallics, (2005).

DOI: 10.1016/j.intermet.2004.05.010

Google Scholar