Generating Singleton Fuzzy Models from Data with Interpretable Partition

Article Preview

Abstract:

This paper presents a new methodology for obtaining singleton fuzzy model from experimental data. Each input variable is partitioned into triangular membership functions so that consecutive fuzzy sets exhibit and specific overlapping of 0.5. The recursive least squares method is employed to adjust the singleton consequences and the gradient descent method is employed to update only the modal value of each triangular membership function to preserve the overlap and reducing the number of parameters to be estimated. Applications to a function approximation problem and to a pattern classification problem are illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-791

Citation:

Online since:

December 2012

Authors:

Export:

Price:

[1] J. M. Alonso, O. Cordón, S. Guillaume, L. Magdalena, Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off, in: Proceedings of IEEE International Conference on Fuzzy Systems, 2007, London, 901-906.

DOI: 10.1109/fuzzy.2007.4295485

Google Scholar

[2] J. M. A. lonso, Interpretable Fuzzy Systems Modeling with Cooperation between Expert and Induced Knowledge, PhD Thesis. Universidad Politécnica de Madrid, Spain, (2007).

Google Scholar

[3] S. Guillaume, "Designing fuzzy inference systems from data: an interpretability-oriented review, IEEE Trans. on Fuzzy Systems 2001; 9: 426–443.

DOI: 10.1109/91.928739

Google Scholar

[4] Y. Chae, K. Oh, W. Lee, G. Kang, Transformation of TSK fuzzy system into fuzzy system with singleton consequents and its application, in: proceedings of IEEE International Conference on Fuzzy Systems, 1999, Seoul, pp.969-973.

DOI: 10.1109/fuzzy.1999.793083

Google Scholar

[5] J. Contreras, R. Misa, L. Murillo. Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos. RIAI: Revista Iberoamericana de Automática e Informática Industrial 2008; 5: 70-77.

DOI: 10.1016/s1697-7912(08)70164-x

Google Scholar

[6] J. Contreras, R. Misa, L. Murillo. Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach, in: Proceedings of IEEE International Conference on Fuzzy Systems, 2007, London, pp.1591-1596.

DOI: 10.1109/fuzzy.2007.4295604

Google Scholar

[7] J. Espinosa, J. Vandewalle. Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm, IEEE Trans. Fuzzy Systems 2000; 8: 591 – 600.

DOI: 10.1109/91.873582

Google Scholar

[8] R. Fullér, Neural Fuzzy Systems, Åbo Akademis Tryckeri, Finland, (1995).

Google Scholar

[9] A.E. Gaweda, J.M. Zurada, Data-Driven Linguistic Modeling Using Relational Fuzzy Rules, IEEE Trans. Fuzzy Systems 2003; 11: 121-134.

DOI: 10.1109/tfuzz.2002.803491

Google Scholar

[10] Y. Jin, Fuzzy Modeling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement, IEEE Transactions on Fuzzy Systems 2000; 8: 221-221.

DOI: 10.1109/91.842154

Google Scholar

[11] Ch-F. Juang, A TSK Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithm, IEEE Trans. Fuzzy Systems 2002; 10: 155 –170.

DOI: 10.1109/91.995118

Google Scholar

[12] H.M. Lee, C.M. Chen, J.M. Chen Y.L. Jou, An efficient fuzzy classifier with feature selection based on fuzzy entropy, IEEE Trans. Syst. Man and Cybern 2001; 31: 426-432.

DOI: 10.1109/3477.931536

Google Scholar

[13] D. Nauck, D., R. Kruse, Neuro-fuzzy systems for function approximation, Fuzzy Sets and System 1999; 101: 261-271.

DOI: 10.1016/s0165-0114(98)00169-9

Google Scholar

[14] R. P. Paiva., A. Dourado, Interpretability and Learning in Neuro-Fuzzy Systems, Fuzzy Sets and System. 2004; 147: 17-38.

DOI: 10.1016/j.fss.2003.11.012

Google Scholar

[15] W. Pedriycz,. Why Triangular Membership Functions?, IEEE Trans. Fuzzy Sets and System 1994; 64: 21-30.

Google Scholar

[16] H. Roubos and M. Setnes, Compact and Transparent Fuzzy Models and Classifiers Through Iterative Complexity Reduction, IEEE Trans. Fuzzy Syst. 2001; 9: 516–524.

DOI: 10.1109/91.940965

Google Scholar

[17] R. Setiono, H. Liu, Neural Network feature selector, IEEE Trans. Neural Network 1997; 88: 654-662.

DOI: 10.1109/72.572104

Google Scholar

[18] T. Sudkamp, A. Knapp, J. Knapp Model Generation by Domain Refinement and Rule Reduction., IEEE Trans. On System, Man and Cybernetics 2003; 33: 45-55.

DOI: 10.1109/tsmcb.2003.808186

Google Scholar

[19] M. Sugeno, T. Yasukawa, A fuzzy logic based approach to qualitative modeling, Transactions on Fuzzy Systems 1993; 1: 7-31.

DOI: 10.1109/tfuzz.1993.390281

Google Scholar

[20] J.S. Wang, C.S. G Lee, Self adaptive neuro-fuzzy inference system for classifications application, IEEE Trans. Fuzzy Systems 2002; 10: 790-802.

DOI: 10.1109/tfuzz.2002.805880

Google Scholar