Effect of Rare Earth Doped Elements and Characterization of LaF3:Ln3+ (Ln3+= Ce3+, Pr3+, Nd3+) Nanocrystals

Article Preview

Abstract:

Abstract. LaF3 nanocrystals doped with lanthanides like Ce3+, Pr3+ and Nd3+ have been prepared using microwave technique. These synthesized crystals have been characterized by X-ray powder diffraction. Well dispersed, elongated, nanorods of hexagonal geometry (approximately 20nm in size) have been found in TEM analysis. The average particle size estimated from XRD analysis is about 20 nm and is in close agreement with the TEM results. Four characteristic peaks one at 3434 cm-1 (broad) and other at 2924, 2853, 1632 cm-1(sharp) have been observed in the FTIR spectra. Intense Blue colour (458 nm) emission has been recorded when crystals are excited with photons of wavelength 254 nm. Non Linear Optical (NLO) properties of the synthesized nanocrystals have been studied. It has been found that second harmonic generation (SHG) efficiency of the prepared samples containing rare earth elements is less than pure Potassium dihydrogen phosphate (KDP) crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-178

Citation:

Online since:

November 2012

Export:

Price:

[1] B.M. Tissue, Che.Mater. 10(1998) 2837-2845.

Google Scholar

[2] M.Nishi, S.Tanabe, M.Inoue, M.Takahashi, K.Fujita, K.Hirao. Opt.Mater. 27(2005) 655-662. [3] Y.X. Pan, Q.Su, H.F.Xu, T.H. Chen, C.L. Yang, J.Solid State Chem. 174 (2003) 69-73.

Google Scholar

[4] P.Y Jia, J. Lin, M. Yu .J. Lumin.134 (2007)122-123.

Google Scholar

[5] S. Sivakumar, F. C. J. M. Van Veggel, P. S.May. J. Am. Chem. Soc. 129 (2007) 620-625.

Google Scholar

[6] J.S. Zhang, W.P. Qin, D. Zhao, Y.Wang. J. Lumin. 122 (2007)506-508.

Google Scholar

[7] F. Evanics, P. R. Diamente, F. C. J. M .Van Veggel. Chem. Mater. 18(2006) 2499-2505.

Google Scholar

[8] F. Wang, Zhang Y, Fan X P, Wang M Q.Nanotechnology. 17 (2006) 1527-1532.

Google Scholar

[9] P. R. Diamente, F. C. J. M. Van Veggel. J. Fluoresc. 15(2005) 543-551.

Google Scholar

[10] H.D. Zhou, M.E. Yue, J.M. Chen, Y.P.Ye, Tribol.Int. 24(2004) 225-230.

Google Scholar

[11] N.Miura, J.Hisamoto, N.Yamazoe, S.Kuwata, Sens.Actuators B. 16 (1989) 301-310.

Google Scholar

[12] O.V. Kudryavteseva, L.S. Garashina, K.K. Rivkina, B.P. Sobolev, J. Sov. Phys. Crystallography. 18 (1974) 531-541.

Google Scholar

[13] H.R. Zheng, X.T Wang, M.J. Dejneka, J. Lumin. 108(2004)395-399.

Google Scholar

[14] S. Tanabe, H. Hayashi, T. Hanada, N. Onodera. Opt. Mater. 19 (2002)343-349.

Google Scholar

[15] D.B. Pi, F. Wang, X.P. Fan, M.Q. Wang, Y. Zhang. Spectrochim.ActaA.61 (2005)2455-2459.

Google Scholar

[16] J. W. Stouwdam, A. Gerald. Hebbink, J. Huskens, F. C. J. M vanVeggel. Chem.Mater.15 (2003)4604-4616.

Google Scholar

[17] J.X. Meng, M.F. Zhang, Y.L. Liu, S.Q. Man, Spectro. Acta Part A. 66(2007) 81-85.

Google Scholar

[18] W. T. Carnall, G. L. Goodman, K. Rajnak, R. S. Rana. A J. Chem. Phys.90 (1989)3443- 3457.

Google Scholar

[19] Y.F Liu, W. Chen, S. Wang, A. G. Joly, S. Westcott, B. K. Woo. J. of App. Phy. 103 (2008) 063105

Google Scholar

[20] F. Wang, Y. Zhang, X. Fan and M. Wang, J. Mater. Chem. 16(2006) 1031–1034.

Google Scholar

[21] X. Wang, J. Zhuang, Q. Peng, Y. Li. Inorg. Chem. 45 (2006) 6661-6665.

Google Scholar

[22] H. Guo, T. Zhang, Y. M. Qiao, L. H. Zhao, Z. Q. Li, J. of Nanoscience and Nanotechnology. 10 (2010) 1913–(1919)

Google Scholar

[23] J. Wang, J. Hu, D. Tang, X. Liu, Z. Zhen. J. Mater. Chem. 17(2007) 1597–1601

Google Scholar

[24] L. V. Pieterson, R.T. Wegh, A. Meijerink, J.of Chem.Phy. 115 (2001) 9382-9392.

Google Scholar

[25] S. K. Kurtz, T. T. Perry, J. Appl. Phys. 39 (1968) 3798-3813

Google Scholar