Preparation and Surface Modification of Fe3O4@Sio2 Composite Microspheres

Article Preview

Abstract:

Magnetic Fe3O4@SiO2 composite microspheres were prepared using hydrolyzation of tetraethoxysilane and Fe3O4 nanoparticles as seeds, and then the resultant composite particles were modified with silane coupling agent 3-methacryloxypropyltrimethoxy silane. The products were characterized by scanning electron microscope, X-ray powder diffraction, fourier transform infrared spectroscopy, and vibrating-sanple magnetometry, respectively. The results clearly show that the magnetic particles have favorable superparamagnetism and remain strong magnetic response. Moreover, the duplex bonds of carbon functional groups from 3-methacryloxypropyltrimethoxy silane was introduced onto the suface of Fe3O4@SiO2 composite particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

115-120

Citation:

Online since:

January 2012

Export:

Price:

[1] M. Canbay, A. Aydin and C. Kurtulus, Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey), J Appl Geophys,  vol. 70, no. 1, pp.46-57, (2010).

DOI: 10.1016/j.jappgeo.2009.11.002

Google Scholar

[2] Y.H. Chen, Y.Y. Liu, R.H. Lin and F.S. Yen, Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution, J Hazard Mater, vol. 163, no. 2-3, pp.973-981, (2009).

DOI: 10.1016/j.jhazmat.2008.07.097

Google Scholar

[3] H. Gu, K. Xu, C. Xu and B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun, vol. 9, no. 9, pp.941-949, (2006).

DOI: 10.1039/b514130c

Google Scholar

[4] T. M. Said, S. Grunewald, U. Paasch, M. Rasch, A. Agarwal and H.J. Glander, Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates, Fertil Steril, Vol. 83, no. 5, pp.1442-1446, (2005).

DOI: 10.1016/j.fertnstert.2004.11.052

Google Scholar

[5] M.O. Avilés, A.D. Ebner and J.A. Ritter, Inclusion of magnetic dipole-dipole and hydrodynamic interactions in implant-assisted magnetic drug targeting, J. Magn. Magn. Mater,  vol. 320, no. 21, pp.2640-2646, (2008).

DOI: 10.1016/j.jmmm.2008.05.022

Google Scholar

[6] P.J. Cregg, K. Murphy and A. Mardinoglu, Inclusion of magnetic dipole-dipole and hydrodynamic interactions in implant-assisted magnetic drug targeting,  J. Magn. Magn. Mater, vol. 321, no. 23, pp.3893-3898, (2009).

DOI: 10.1016/j.jmmm.2009.07.056

Google Scholar

[7] C.L. Chiang and C.S. Sung, Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles, J. Magn. Magn. Mater, Vol. 302, no. 1, pp.7-13, (2006).

DOI: 10.1016/j.jmmm.2005.08.022

Google Scholar

[8] T. Sato, T. Iijima, M. Seki and J. Inagaki, Magnetic properties of ultrafine ferrite particles, , J. Magn. Magn. Mater, vol. 65, no. 1, pp.252-256, (1987).

DOI: 10.1016/0304-8853(87)90044-8

Google Scholar

[9] Z.Y. Ma, X.Q. Liu, Y.P. Guan and H.Z. Liu, Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins, Colloid Surface A, vol. 275, no. 1-3, pp.87-91, (2006).

DOI: 10.1016/j.colsurfa.2005.04.045

Google Scholar

[10] Y. Li, X. Li, J. Chu, C.K. Dong, J.Y. Qi and Y.X. Yuan, Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions, Environ Pollut, vol. 158, no. 6, pp.2317-2323, (2010).

DOI: 10.1016/j.envpol.2010.02.007

Google Scholar

[11] Freris, D. Cristofori, P. Riello and A. Benedetti, Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate) , J Colloid Interf Sci, vol. 331, no. 2, pp.351-355, (2009).

DOI: 10.1016/j.jcis.2008.11.052

Google Scholar

[12] Y. B. Zhao, Z. M. Qiu and J.Y. Huang, Preparation and Analysis of Fe3O4 Magnetic Nanoparticles Used as Targeted-drug Carriers, Chinese J Chem Eng, vol. 16, no. 3, pp. 45l-455, (2008).

DOI: 10.1016/s1004-9541(08)60104-4

Google Scholar

[13] M. Hamoudeh and H. Fessi, Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles, J Colloid Interf Sci, vol. 300, no. 2, pp.584-590, (2006).

DOI: 10.1016/j.jcis.2006.04.024

Google Scholar

[14] X. Wang, L.Y. Wang, X.W. He, Y.K. Zhang and L.X. Chen, A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition, Talanta, vol. 78, no. 2, pp.327-332, (2009).

DOI: 10.1016/j.talanta.2008.11.024

Google Scholar

[15] Z.L. Lei, Y.L. Li and X.Y. Wei, A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles, J Solid State Chem, vol. 181, no. 3, pp.480-486, (2008).

DOI: 10.1016/j.jssc.2007.12.004

Google Scholar

[16] B.P. J and L. Gao, Silica shell cemented anisotropic architecture of Fe3O4 beads via magnetic-field-induced self-assembly, Scripta Mater, vol. 56, no. 8, pp.677-680, (2007).

DOI: 10.1016/j.scriptamat.2006.12.045

Google Scholar