Preparation of Chrome Carbide Coatings on T/P 24 by PIRAC

Article Preview

Abstract:

In order to improve oxidation/erosion resistance of the T/P 24 steel components used in advanced power plants, chrome carbide coatings were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) on T/P24 at 700-1000°C. Microstructure and phase composition of the obtained surface layers were characterized employing X-ray diffraction and scanning electron microscopy with chemical analysis (SEM/EDS). Results showed that homogenous smooth chrome carbide coatings can be formed on the substrate. Phase composition of the prepared coatings are differs with PIRAC temperatures. Prepared at lower temperatures or short times treatment, Cr23C6, Cr7C3 and Cr3C2 can be detected in the coatings. While, at higher temperatures or longer treatment times, Cr23C6 is subtotal phase of the produced coating. Moreover, the lower the PIRAC temperature is, the more of Cr7C3 and Cr3C2 are. Thermodynamics calculation based on Gibbs free energy is applied to explain phase composition difference of the coatings.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 452-453)

Pages:

77-80

Citation:

Online since:

January 2012

Export:

Price:

[1] W. Bendick, J. Gabrel, B. Hahn, B. Vandenberghe: Int. J. Pres. Ves. Pip. Vol. 84 (2007) p.13.

Google Scholar

[2] J.C. Vaillant, B. Vandenberghe, B. Hahn, et al.: Int. J. Pres. Ves. Pip. Vol. 85 (2008) p.38.

Google Scholar

[3] A. Aghajani, Ch. Somsen, J. Pesicka, et al.: Mater. Sci. Eng., A Vol. 510–511 (2009) p.130.

Google Scholar

[4] P. Villars, L.D. Calvert, in: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, (vol. II, American Society for Metals, Metals Park, 1985, p.1511. ).

Google Scholar

[5] C.P. Lai, C.T. Fu, J.R. Duann, A.K. Li, K.L. Ko, U.S. Patent 5, 470, 807 (1995).

Google Scholar

[6] M. Čekada, P. Panjan, M. Maček, et al.: Surf. Coat. Technol. Vol. 151–152 (2002) p.31.

Google Scholar

[7] Y.L. Su, T.H. Liu, C.T. Su, et al.: J. Mater. Process. Technol. Vol. 171 (2006) p.108.

Google Scholar

[8] D.Y. Wang, K.W. Weng, C.L. Chang, W. Y Ho: Surf. Coat. Technol. Vol. 120-121 (1999) p.622.

Google Scholar

[9] A. Kagawa, Y. Ohta: Mater. Sci. Technol. Vol. 11 (1995) p.515.

Google Scholar

[10] R. Teghil, A. Santagata, A. De Bonis, et al.: Appl. Surf. Sci. Vol. 255 (2009) p.7729.

Google Scholar

[11] T. Arai, S. Moriyama: Thin Solid Films Vol. 259 (1995) p.174.

Google Scholar

[12] A. Shenhar, I. Gotman, E.Y. Gutmanas, P. Ducheyne: Mater. Sci. Eng. A Vol. 26 (1999) p.40.

Google Scholar

[13] S.J. Wu, E.Y. Gutmanas and I. Gotman: Key Eng. Mater. Vol. 434-435 (2010) p.481.

Google Scholar

[14] X.W. Yin, I. Gotman, L. Klinger, E.Y. Gutmanas: Mater. Sci. Eng., A Vol. 396 (2005) p.107.

Google Scholar

[15] O. Knacke, O. kubaschewski, K. Hesselmann (EDs. ), in: Thermochemical Properties of Inorganic Substance (second Edition, Springer-Verlag, 1991).

Google Scholar