Surface Modification of Spinel LiMn2O4 with Y2O3 for Lithium-Ion Battery

Article Preview

Abstract:

Spinel LiMn2O4 was modified with Y2O3 coating by a chemical process. The crystal structures of the as-prepared samples were investigated by X-ray diffraction (XRD). The charge/discharge characteristics of the modified samples were evaluated at different rates between 3.0 and 4.4V. The discharge capacities of 2.0 wt.% Y2O3-coated LiMn2O4 are 116 mAh•g−1, 99.7mAh•g−1, 93.3mAh•g−1 and 82.9mAh•g−1 at 0.1C, 0.5C, 1C and 2C rates (at 20C). The cycle abilities improvement of the spinel LiMn2O4 coated with Y2O3 are demonstrated at elevated temperature (55C) and high rates (2C). From the analysis of electrochemical impedance spectroscopy (EIS), the improvement of cycle ability may be attributed to the suppression on the formation of the passivating films and the reduction of Mn dissolution, which result from the surface modification with Y2O3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

1069-1074

Citation:

Online since:

December 2011

Export:

Price:

[1] D. Arumugam, G.P. Kalaignan and P. Manisankar: Solid State Ionics Vol. 179 (2008) , p.580

Google Scholar

[2] Y.P. Wu, E. Rahm and R. Holze: Electrochim. Acta Vol. 47 (2002), p.3491

Google Scholar

[3] J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek and R. Dziembaj: Solid State Ionics Vol. 171 (2004), p.215

Google Scholar

[4] J.G Li, X.M. He and R.S. Zhao: Trans. Nonferrous Met. Soc. Vol. 17 (2007), p.1324

Google Scholar

[5] D.Q. Liu, Z.Z. He and X.Q. Liu: Mater. Lett. Vol. 61 (2007), p.4703

Google Scholar

[6] A. Blyr, C. Sigala, G.G. Amatucci, D. Guyomard, Y. Chabre, and J.M. Tarascon: J Electrochem. Soc. Vol. 145 (1998), p.194

DOI: 10.1149/1.1838235

Google Scholar

[7] S.B. Park, H.C. Shin, W.G. Lee, W.I. Cho and H. Jang: J Power Sources Vol. 180 (2008), p.597

Google Scholar

[8] H.W. Liu, C.X. Cheng, Z.Q. Hu and K.L. Zhang: J. Mater. Sci. Vol. 40 (2005), p.5767

Google Scholar

[9] J. Tu, X.B. Zhao, J. Xie, G.S. Cao, D.G. Zhuang, T.J. Zhu, J.P. Tu: J. Alloy. Compd. Vol. 432 (2007), p.313

Google Scholar

[10] D.Q. Liu, X.Q. Liu and Z.Z. He: J. Alloy. Compd. Vol. 436 (2007), p.387

Google Scholar

[11] L.H. Yu, X.P. Qiu , J.Y. Xi, W.T. Zhu and L.Q. Chen: Electrochim. Acta Vol. 51 (2006), p.6406

Google Scholar

[12] D.Q. Liu, X.Q. Liu and Z.Z. He: Mater. Chem. Phys. Vol. 105 (2007), p.362

Google Scholar

[13] F. Wu, M. Wang, Y.F. Su and S. Chen: J Power Sources Vol. 189 (2009), p.743

Google Scholar

[14] G.G. Amatucci, C.N. Schmutz, A. Blyr, C. Sigala, A.S. Gozdz, D. Larcher and J.M. Tarascon: J. Power Sources Vol. 69 (1997), p.11

DOI: 10.1016/s0378-7753(97)02542-1

Google Scholar

[15] J. Fan, and P.S. Fedkiw: J. Power Sources Vol. 72 (1998), p.165

Google Scholar