Sorption Profile of Hg(II) onto Mixed Phase of Copper Sulphide and Copper Sulphate

Article Preview

Abstract:

The use of surface oxidized covellite (CuS), namely mixed phase copper sulphide (CuS and CuSO4) was studied for the removal of mercury from aqueous solution under the effect of various reaction parameters (pH, time, Hg(II) concentration). From batch sorption studies, the equilibrium data revealed that the sorption behaviour of Hg(II) onto mixed phase copper sulphide follows well with Langmuir isotherm and the maximum sorption capacity (Qmax) determined ≈ 400mg Hg(II) /g of sorbent. Meanwhile, all the unreacted and reacted mixed phase copper sulphides were also characterized by Powder XRD, SEM and XPS techniques. The results indicated that the sorption of Hg(II) onto mixed phase copper sulphide occurs initially through the dissolution of surface oxidized CuSO4 layer. After that, the surface complexation product formed and sorbed onto the surface of CuS. These outcomes suggest the potential ability of CuS in removing Hg(II) even if the CuS layer is being surrounded by oxidized layer of CuSO4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

537-546

Citation:

Online since:

October 2011

Export:

Price:

[1] The twenty-fifth session of the United Nations Environment Programme (UNEP) Governing Council/Global Ministerial Environment Forum 2009: Nairobi, Kenya.

Google Scholar

[2] Decisions of the twenty-sixth session of the Governing Council/Global Ministerial Environment Forum. 2011: Nairobi, Kenya.

Google Scholar

[3] X. Zhong, H. Feng, D. Zhao, and M. O. Barnett: Water Res. Vol. 43 (2009), p.5171

Google Scholar

[4] J. Liu, K. T. Valsaraj, I. Devai, and R. D. DeLaune: J. Hazard. Mater. Vol. 157 (2008), p.432

Google Scholar

[5] H. Y. Jeong, B. Klaue, J. D. Blum, and K. F. Hayes: Environ. Sci. Technol. Vol. 41 (2007), p.7699

Google Scholar

[6] G. E. Jean and G. M. Bancroft: Geochim. Cosmochim. Acta Vol. 50 (1986), p.1455

Google Scholar

[7] M. M. Hyland, G. E. Jean, and G. M. Bancroft: Geochim. Cosmochim. Acta Vol. 54 (1990), p. (1957)

Google Scholar

[8] A. E. Gash, A. L. Spain, L. M. Dysleski, C. J. Flaschenriem, A. Kalaveshi, P. K. Dorhout, and S. H. Strauss: Environ. Sci. Technol. Vol. 32 (1998), p.1007

DOI: 10.1021/es970804n

Google Scholar

[9] J. J. Ehrhardt, P. Behra, P. Bonnissel-Gissinger, and M. Alnot: Surf. Interface Anal. Vol. 30 (2000), p.269

DOI: 10.1002/1096-9918(200008)30:1<269::aid-sia758>3.0.co;2-n

Google Scholar

[10] J. Bower, K. S. Savage, B. Weinman, M. O. Barnett, W. P. Hamilton, and W. F. Harper: Environ. Pollut. Vol. 156 (2008), p.504

Google Scholar

[11] R. G. Pearson: J. Am. Chem. Soc. Vol. 85 (1963), p.3533

Google Scholar

[12] P. J. Martellaro, G. A. Moore, E. S. Peterson, E. H. Abbott, and A. E. Gorenbain: Sep. Sci. Technol. Vol. 36 (2001), p.1183

Google Scholar

[13] A. Makkuni, R. S. Varma, S. K. Sikdar, and D. Bhattacharyya: Ind. Eng. Chem. Res. Vol. 46 (2007), p.1305

Google Scholar

[14] E. D. Stein, Y. Cohen, and A. M. Winer: Crit. Rev. Environ. Sci. Tech. Vol. 26 (1996), p.1

Google Scholar

[15] S. Wolfenden, J. M. Charnock, J. Hilton, F. R. Livens, and D. J. Vaughan: Environ. Sci. Technol. Vol. 39 (2005), p.6644

DOI: 10.1021/es048874z

Google Scholar

[16] P. J. Martellaro, G. A. Moore, and E. S. Peterson, in: Mercury-Sorption Characteristics of Nanoscale Metal Sulfides, edited by S. Abdel hamid and J. Mietek, Studies in Surface Science and Catalysis, p.765, Elsevier (2000).

DOI: 10.1016/s0167-2991(00)80281-5

Google Scholar

[17] C.-C. Wu and M.-H. Yang: Anal. Chim. Acta Vol. 84 (1976), p.335

Google Scholar

[18] H. O. Phillips and K. A. Kraus: J. Chromatogr., A Vol. 17 (1965), p.549

Google Scholar

[19] P. L. Yap, Y. L. A. Yoong, M. G. Kutty, O. Timpe, M. Behrens, R. Schlögl, and S. B. A. Hamid: Abstracts of Papers, in: 16th Malaysian Chemical Congress, Malaysian Institute of Chemistry (IKM): Kuala Lumpur, Malaysia, 2010; Abstract MPC16.

Google Scholar

[20] P. L. Yap, Y. L. A. Yoong, M. G. Kutty, O. Timpe, M. Behrens, R. Schlögl, and S. B. A. Hamid: Manusript in preparation.

Google Scholar

[21] I. Langmuir: J. Am. Chem. Soc. Vol. 39 (1917), p.1848

Google Scholar

[22] I. Langmuir: J. Am. Chem. Soc. Vol. 38 (1916), p.2221

Google Scholar

[23] H. M. Freundlich: Z. Phys. Chem. Vol. 57A (1906), p.385

Google Scholar

[24] W.-W. Zhang, C.-S. Lu, Y. Zou, J.-L. Xie, X.-M. Ren, H.-Z. Zhu, and Q.-J. Meng: J. Colloid Interface Sci. Vol. 249 (2002), p.301

Google Scholar

[25] G. Lefèvre, J. Bessière, J.-J. Ehrhardt, and A. Walcarius: J. Environ. Radioact. Vol. 70 (2003), p.73

Google Scholar

[26] S. Wang and S. Yang: Mater. Sci. Eng., A Vol. 16 (2001), p.37

Google Scholar

[27] A. Galtayries and J. P. Bonnelle: Surf. Interface Anal. Vol. 23 (1995), p.171

Google Scholar

[28] S. W. Goh, A. N. Buckley, and R. N. Lamb: Miner. Eng. Vol. 19 (2006), p.204

Google Scholar

[29] M. M. Hyland and G. M. Bancroft: Geochim. Cosmochim. Acta Vol. 53 (1989), p.367

Google Scholar

[30] H. T. Evans and J. A. Konnert: Am. Mineral. Vol. 61 (1976), p.996

Google Scholar

[31] E. J. Silvester, F. Grieser, B. A. Sexton, and T. W. Healy: Langmuir Vol. 7 (1991), p.2917

Google Scholar

[32] T. Kuzuya, K. Itoh, M. Ichidate, T. Wakamatsu, Y. Fukunaka, and K. Sumiyama: Electrochim. Acta, Vol. 53 (2007), p.213

DOI: 10.1016/j.electacta.2007.06.033

Google Scholar

[33] A. R. Lennie, J. M. Charnock, and R. A. D. Pattrick: Chem. Geol. Vol. 199 (2003), p.199

Google Scholar