Molecular Cloning and Characterization Analysis of 3,8-Divinyl Protochlorophyllide a 8-Vinyl Reductase Gene from Dunaliella parva

Article Preview

Abstract:

The vast majority of photosynthetic organisms utilize monovinyl chlorophyll for their photosynthetic reactions. For the biosynthesis of monovinyl chlorophyll, the reduction of the 8-vinyl group which is located on the B-ring of the macrocycle is essential. 3,8-Divinyl protochlorophyllide a 8-vinyl reductase (DVR) catalyzes the reduction of 8-vinyl group on the tetrapyrrole to an ethyl group, which is necessary for monovinyl chlorophyll (Chl) synthesis. The former studies indicated the DVR could enhance photosynthesis. The full-length cDNA encoding DVR was obtained from oleaginous microalgae Dunaliella parva, which include 1326 bp open reading frame (ORF), 22 bp 5′-untranslated sequence and 383 bp 3′-untranslated sequence. Dunaliella parva DVR showed the highest sequence similarity with the DVR from Chlamydomonas reinhardtii and Volvox carteri. The Dunaliella parva DVR also showed wide similarity with other species.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3203-3206

Citation:

Online since:

October 2011

Export:

Price:

[1] Y. Chisti, Biotechnol. Adv. 25 (2007) 294-306

Google Scholar

[2] Y. L i, M. Horsman, N. Wu, C.Q. Lan, N. Dubois-Calero, Biotechnol. Prog. 24 (2008) 815-820

Google Scholar

[3] B. Wang, Y. Li, N. Wu, C.Q. Lan, Appl. Microbiol. Biotechnol. 79 (2008) 707-718

Google Scholar

[4] T.L. Walker, S. Purton, D.K. Becker, C. Collet, Plant Cell Rep. 24 (2005) 629-641

DOI: 10.1007/s00299-005-0004-6

Google Scholar

[5] P. Fromme, A. Melkozernov, P. Jordan, N. Krauss, FEBS Lett. 555 (2003) 40-44

Google Scholar

[6] R. Tanaka, A. Tanaka, Annu. Rev. Plant Biol. 58 (2007) 321-346

Google Scholar

[7] W.M. Manning, H.H. Strain, J. Biol. Chem. 151 (1943) 1-19

Google Scholar

[8] S. Akimoto, M. Yokono, M. Ohmae, I. Yamazaki, N. Nagata, R. Tanaka, A. Tanaka, M. Mimuro, Chem. Phys. Lett. 409 (2005) 167-171

DOI: 10.1016/j.cplett.2005.05.006

Google Scholar

[9] N. Nagata, R. Tanaka, S. Satoh, A. Tanaka, Plant Cell 17 (2005) 233-240

Google Scholar

[10] H. Nakanishi, H. Nozue, K. Suzuki, Y. Kaneko, G. Taguchi, N. Hayashida, Plant Cell Physiol. 46 (2005) 467-473

DOI: 10.1093/pcp/pci053

Google Scholar

[11] A.G.M. Chew, D.A. Bryant, J. Biol. Chem. 282 (2007) 2967-2975

Google Scholar

[12] M.R. Islam, S. Aikawa, T. Midorikawa, Y. Kashino, K. Satoh, H. Koike, Plant Physiol. 148 (2008) 1068-1081

Google Scholar

[13] H. Ito, M. Yokono, R. Tanaka, A. Tanaka, J. Biol. Chem. 283 (2008) 9002-9011 Figure 1 The full-length cDNA sequence of DVR gene from Dunaliella parva Figure 2 Phylogenetic relationships between deduced amino acid sequences from DVR of Dunaliella parva and other homologous species. The phylogenetic tree was constructed by using the neighbor-joining method of MEGA4 software. The analysis indicated a high similarity phylogenetic relationship among Dunaliella parva, Chlamydomonas reinhardtii, and Volvox carteri.

DOI: 10.7554/elife.05733.006

Google Scholar