Poly(3-alkylthiophene) Nanofibers for Photovoltaic Energy Conversion

Article Preview

Abstract:

The use of nanostructured non-conventional semiconductors such as conjugated polymers and metal oxides (e.g. TiO2), opens promising perspectives towards a new generation of solar cells based on the concept of donor:acceptor bulk heterojunctions. In this concept donor material and acceptor material form interpenetrating networks allowing light absorption, charge transfer and charge transport throughout the entire bulk of the thin film. Since nanomorphology is of crucial importance for this type of solar cells, in this contribution the use of nanofibers in bulk heterojunction solar cells is explored in order to obtain highways for charge transport. We investigate in particular the use of P3AT (poly(3-alkylthiophene)) nanofibers and show that the polymer fraction aggregated into fibers can be easily controlled by temperature. We find an optimal efficiency at intermediate fiber fraction and show that it can be linked to the morphology of the active layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

August 2011

Export:

Price:

[1] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78 (2001) 841

DOI: 10.1063/1.1345834

Google Scholar

[2] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Adv. Funct. Mater. 13 (2003) 85

Google Scholar

[3] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5 (2005) 579

DOI: 10.1021/nl048120i

Google Scholar

[4] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5 (2005) 579

DOI: 10.1021/nl048120i

Google Scholar

[5] C.-J. Ko, Y.-K. Lin, F.-C. Chen, Adv. Mater. 19 (2007) 3520

Google Scholar

[6] S. Berson, R. De Bettignies, S. Baily, S. Guillerez, Adv. Funct. Mater. 17 (2007) 1377

Google Scholar

[7] W.D. Oosterbaan, V. Vrindts, S. Berson, S. Guillerez, O. Douheret, B. Ruttens, J. D'Haen, P. Adriaensens, J. Manca, L. Lutsen, D. Vanderzande, J. Mater. Chem. 19 (2009) 5424

DOI: 10.1039/b900670b

Google Scholar

[8] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D'Haen, P. Heremans, J. Poortmans, J.V. Manca, Sol. Energy Mater. Sol. Cells 90 (2006) 2150

DOI: 10.1016/j.solmat.2006.02.010

Google Scholar

[9] S. Hugger, R. Thomann, T. Heinzel, T. Thurn-Albrecht, Colloid Polym. Sci. 282 (2004) 932

DOI: 10.1007/s00396-004-1100-9

Google Scholar

[10] S. Bertho, W.D. Oosterbaan, V. Vrindts, J. D'Haen, T.J. Cleij, L. Lutsen, J. Manca, D. Vanderzande, Org. Electron. 10 (2009) 1248

DOI: 10.1016/j.orgel.2009.06.018

Google Scholar

[11] M. Reyes-Reyes, K. Kim, D.L. Carrol, Appl. Phys. Lett. 87 (2005) 083506

Google Scholar

[12] T.J. Savenije, J.E. Kroeze, X. Yang, J. Loos, Thin Solid Films 511 (2006) 2

Google Scholar

[13] K. Vandewal, W. D. Oosterbaan, S. Bertho, V. Vrindts, A. Gadisa, L. Lutsen, D. Vanderzande, J.V. Manca, Appl. Phys. Lett. 95 (2009) 123303

DOI: 10.1063/1.3232242

Google Scholar

[14] W.D. Oosterbaan, J.-C. Bolsée, A. Gadisa, V. Vrindts, S. Bertho, J. D'Haen, T.J. Cleij, L. Lutsen, C.R. McNeill, L. Thomsen, J.V. Manca, D. Vanderzande, Adv. Funct. Mater. 20 (2010) 792

DOI: 10.1002/adfm.200901471

Google Scholar