Light-Weight Intermetallic Titanium Aluminides – Status of Research and Development

Article Preview

Abstract:

Development and processing of high-temperature materials is the key to technological progress in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace and automotive industries. New structural materials have to be stronger, stiffer and lighter to withstand the extremely demanding conditions in the next generation of aero- and automotive engines. Intermetallic -TiAl based alloys exhibit numerous attractive properties which meet these demands. These properties include high melting point, low density, high specific elastic modulus, good oxidation and burn resistance, and high specific strength up to application temperatures of 700 to 800°C. Thus, current -TiAl based alloys outperform advanced Ti-based alloys and have the potential to replace heavy Ni-based superalloys.

You have full access to the following eBook

Info:

Periodical:

Pages:

551-556

Citation:

Online since:

July 2011

Export:

[1] Gamma Titanium Aluminides 2003, edited by Y-W. Kim, H. Clemens and A. Rosenberger, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, USA (2003).

Google Scholar

[2] Structural Aluminides for Elevated Temperature Applications, edited by Y-W. Kim, D. Morris, R. Yang, and C. Leyens, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, USA (2008).

Google Scholar

[3] Titanium and Titanium Alloys, edited by M. Peters and C. Leyens, Wiley-VCH, Weinheim, Germany (2003).

Google Scholar

[4] H. Clemens, F. Appel, A. Bartels, H. Baur, R. Gerling, V. Güther, and H. Kestler, in: Ti-2003 Science and Technology, edited by G. Lütjering and J. Albrecht, Wiley-VCH, Weinheim, Germany, (2004), p.2123.

Google Scholar

[5] F. Appel, and M. Oehring, in.

Google Scholar

[3] p.89.

Google Scholar

[6] F. Appel, M. Oehring and R. Wagner: Intermetallics 8 (2000), p.1283.

Google Scholar

[7] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels: Adv. Eng. Mater. 10 (2008), p.707.

DOI: 10.1002/adem.200800164

Google Scholar

[8] Y-W. Kim: J. Met. 46 (1994) p.30.

Google Scholar

[9] F. Appel and R. Wagner: Mater. Sci. Eng. R22 (1998), p.187.

Google Scholar

[10] T. Kelly: Presentation at the Symposium on Structural Aluminides for Elevated Temperature Applications, TMS 2008 Annual Meeting, New Orleans, LA, USA (March 9-13, 2008).

Google Scholar

[11] W. Wallgram, T. Schmoelzer, G. Das, V. Güther, and H. Clemens: Int. J. Mat. Res. 100 (2009), p.1021.

Google Scholar

[12] C. Scheu, E. Stergar, M. Schober, L. Cha, H. Clemens, A. Bartels, F. -P. Schimansky, and A. Cerezo: Acta Mater. 57 (2009), p.1504.

DOI: 10.1016/j.actamat.2008.11.037

Google Scholar

[13] H. Clemens and H. Kestler: Adv. Eng. Mater. 2 (2000), p.551.

Google Scholar

[14] F. Appel, J. D. H. Paul, M. Oehring, H. Clemens, F.D. Fischer: Z. Metallkd. 95 (2004) p.585.

Google Scholar

[15] N. Rizzi: Presentation at the Symposium Structural Aluminides for Elevated Temperature Applications, TMS 2008 Annual Meeting, New Orleans, LA, USA (March 9-13, 2008).

Google Scholar

[16] S. Knippscheer, G. Frommeyer, H. Baur, R. Joos, M. Lohmann, O. Berg, H. Kestler, N. Eberhardt, V. Güther, and A. Otto, in Materials for Transportation Technologies, edited by P. J. Winkler), Wiley-VCH, Weinheim, Germany (2000), p.111.

DOI: 10.1002/3527606025.ch19

Google Scholar

[17] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, and J.D.H. Paul: Adv. Eng. Mater. 2 (2000), p.699.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[18] D. U. Furrer, R. R. Hoffman and Y-W. Kim, in Gamma Titanium Aluminides, edited by Y-W. Kim, R. Wagner and M. Yamaguchi, TMS, Warrendale, PA, USA (1995), p.611.

Google Scholar

[19] J.F.C. Millet, J.W. Brooks and Z.M. Zu: Mater. Sci. Technology 15 (1999) p.697.

Google Scholar

[20] J.W. Brooks, T.A. Dean, Z.M. Zu and E. Wey: Mater. Process. Techn. 80/81 (1998), p.149.

Google Scholar

[21] T. Tetsui, K. Shindo, S. Kobayashi, and M. Takeyama: Scripta Mater. 47 (2002), p.299.

Google Scholar

[22] S. Kremmer, H. F Chladil, H. Clemens, A. Otto, and V. Güther in: Ti-2007 Science and Technology, edited by M. Niinomi, S. Akiyama, M. Hagiwari, M. Ikeda, and K. Maruyama, The Japan Institute of Technology, Tokyo, Japan (2008), p.989.

Google Scholar

[23] H. Baur, R. Joos, W. Smarsly, and H. Clemens: in Intermetallics and Superalloys, edited by D. G. Morris, S. Naka and P. Caron, Wiley-VCH, Weinheim, Germany (2000), p.384.

Google Scholar

[24] T. Tetsui: in Gamma Titanium Aluminides 1999, edited by Y-W. Kim, D. M. Dimiduk and M. H. Loretto, TMS, Warrendale, PA, USA (1999), p.15.

Google Scholar

[25] P. A. McQuay: in Structural Intermetallics 2001, edited by K. Hemker, D. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. Larsen, V. Sikka, M. Thomas, and D. Wittenberger, TMS, Warrendale, PA, USA (2001), p.83.

Google Scholar

[26] Information on http: /www. mwracing. eu.

Google Scholar

[27] W. Smarsly, H. Baur, G. Glitz, H. Clemens, T. Khan, and M. Thomas: in Structural Intermetallics 2001, edited by K. Hemker, D. Dimiduk, H. Clemens, R. Darolia, J. Larsen, V. Sikka, M. Thomas, and D. Wittenberger, TMS, Warrendale, PA, USA (2001).

Google Scholar