Hot Deformation Behaviors of SiCp/Al Composites

Article Preview

Abstract:

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-169

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] J. M. Torralba, C. E. Da Costa, F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol. 133 (2003)203-206.

Google Scholar

[2] L.M. Tham, M. Gupta, L. Cheng, Effect of reinforcement volume fraction on the evolution of rein- forcement size during the extrusion of Al-SiC composites, Mater. Sci. Eng. A326 (2002) 355-363.

DOI: 10.1016/s0921-5093(01)01526-x

Google Scholar

[3] V. C. Srivastava, V. Jindal, V. Uhlenwinkel, K. Bauckhage, Hot-deformation behaviour of spray- formed 2014 Al+SiCp metal matrix composites, Mater. Sci. Eng. A, 477(2008) 86-95.

DOI: 10.1016/j.msea.2007.06.086

Google Scholar

[4] L. Ceschini, G. Minak, A. Morri, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10vol. % Al2O3p composite, Compos. Sci. Technol. 69 (2009) 1783-1789.

DOI: 10.1016/j.compscitech.2005.04.044

Google Scholar

[5] C. M. Cepeda-Jimenez, O. A. Ruano, M. Carsi, Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization, Mater. Sci. . Eng. A, 552(2012)530-539.

DOI: 10.1016/j.msea.2012.05.082

Google Scholar

[6] J. C. Shao, B. L. Xiao, Q. Z. Wang, Constitutive flow behavior and hot workability of powder metallurgy processed 20vol. % SiCp/2024Al composite, Mater. Sci. Eng. A, 527(2010) 7865-7872.

DOI: 10.1016/j.msea.2010.08.080

Google Scholar

[7] A. M. De Sanctis, E. Evangelista, A. Forcellese, Y. Z. Wang, Hot formability studies on 359/SiC/20p and their application in forging optimisation , Appl. Compos. Mater. 3 (1996) 179-198.

DOI: 10.1007/bf00135055

Google Scholar

[8] X. Xia, P. Sakaris, H. J. McQueen, Hot deformation, dynamic recovery, and recrystallisation behaviour of aluminium 6061–SiCp composite, Mater. Sci. Technol. 10(1994) 487-496.

DOI: 10.1179/mst.1994.10.6.487

Google Scholar

[9] H. J. Mc Queen, E. Evangelista, N. Jin, et al., Energy dissipation efficiency in aluminium dependent on monotonic flow curves and dynamic recovery, Metall. Mater. Trans. A, 26 (1995) 1757–1766.

DOI: 10.1007/bf02670763

Google Scholar

[10] Z. P. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 505(2009)116–119.

DOI: 10.1016/j.msea.2008.11.017

Google Scholar

[11] Y. V .R. K. Prasad, T. Seshacharyulu, Processing maps for hot working of titanium alloy, Mater. Sci. Eng. A, 243(1998) 82–88.

Google Scholar