High Pressure Structural Phase Transition and Elastic Properties of Europium Chalcogenides

Article Preview

Abstract:

The high pressure induced structural phase transition and elastic properties of three Europium chalcogenides (EuX; X = S, Se, Te) have been studied using a two body potential approach. The calculated compression curves of EuS, EuSe and EuTe obtained so has been compared with recently measured three body potential data. The calculated transition pressures are in good agreement with the experimental data. The phase transition pressure for EuS, EuSe and EuTe going from the NaCl phase to CsCl phase have been observed are 22 GPa, 15 GPa, 10 GPa respectively, close the theoretical and experimental data. We have also calculated bulk modulas and second order elastic constants at high pressure which show partly ionic nature of theses compounds. The B1 (NaCl) phase is found to be higher in energy than the B2 (CsCl) phase and more stable at zero pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-169

Citation:

Online since:

October 2014

Export:

Price:

[1] Godewski M & Swlartek K, in Diluted magnetic semiconductors, ed., Mukesh Jain (World scientific, Singapore), (1991).

Google Scholar

[2] Prafulla K Jha & Sankar P Sanyal, Phonon properties of rare-earth europium chalcogenides, Ind. J. of Pure and Appl. Physics, 32 (1994) 824-829.

Google Scholar

[3] P K Jha & S P Sanyal, Lattice Dynamics of uranium chalcogenides and pnictides, Phys. Rev. B 46, (1992) 3664-3667.

DOI: 10.1103/physrevb.46.3664

Google Scholar

[4] P K Jha & S P Sanyal, Lattice Dynamics of intermediate valence compounds SmS and TmSe, Ind. J. of Pure and Appl. Physics, 31 (1993) 469-473.

Google Scholar

[5] U K Sakalle, P K Jha, S P Sanyal, Effect of pressure on the phonon properties of europium chalcogenides, Bull. Mater. Sci. 23(3) (2000) 233–235.

DOI: 10.1007/bf02719916

Google Scholar

[6] M. Horne, P. Strange, W. M. Temmerman, Z. Szotek, A. Svane, H. Winter, The electronic structure of europium chalcogenides and pnictides, J. Phys.: Condens. Matter 16 (2004) 5061-5070.

DOI: 10.1088/0953-8984/16/28/024

Google Scholar

[7] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048-79.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[8] J. Kunes and W. E. Pickett, Exchange coupling in Eu compounds, Physica B 205 (2005) 359–361.

Google Scholar

[9] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Technical Universität Wien, Wien, 2001).

Google Scholar

[10] D. Singh, M. Rajagopalan, and A. K. Bandyopadhyay, Band structure calculation and structural stability of high pressure phases of EuSe, Solid State Commun. 112 (1999) 39-44.

DOI: 10.1016/s0038-1098(99)00296-3

Google Scholar

[11] D. Singh, M. Rajagopalan, M. Husain, and A. K. Bandyopadhyay, High pressure band structures and structural stability of EuS, Solid State Commun. 115 (6) (2000) 323-328.

DOI: 10.1016/s0038-1098(00)00194-0

Google Scholar

[12] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Density-functional theory and NiO photoemission spectra, Phys. Rev. B 48 (1993) 16929-16934.

DOI: 10.1103/physrevb.48.16929

Google Scholar

[13] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[14] D. Rached, M. Ameri, M. Rabah, R. Khenata, A. Bouhemadou, N. Benkhettou, and M. Dine el Hannani, Electronic structure calculations of europium chalcogenides EuS and EuSe, Phys. stat. sol. (b) 244 (6) (2007) 1988–(1996).

DOI: 10.1002/pssb.200642450

Google Scholar

[15] Dinesh C. Gupta & Kailash C. Singh, High-pressure phase transition and thermoelastic properties of europium chalcogenides, J Mol. Model 18 (2012) 3003–3012.

DOI: 10.1007/s00894-011-1296-9

Google Scholar

[16] A Jayaraman, A.K. Singh, V. Chatterjee and S. Ushadevi, Phys. Rev. B 9 (1974) 2513-2520.

Google Scholar

[17] R.W.G. Wyckoff, Crystal structure, Wiley, New York (1963).

Google Scholar

[18] V. Srivastava, S.P. Sanyal, Plutonium chalcogenides and pnictides: pressure induced phase transition and elastic properties, J. of Alloys and Comp. 366 (2004) 15-20.

DOI: 10.1016/s0925-8388(03)00692-3

Google Scholar

[19] Ashvini K Sahu, Ramakant Bhardwaj, Sankar P Sanyal, Pressure Induced Structural Phase Transition and Elastic Properties of Lutetium Chalcogenides (LuX, X: S, Se and Te) Advances in Physics Theories and Applications 10 (2012) 1-10.

DOI: 10.1063/1.4709902

Google Scholar

[20] P. Ojha, M. Aynyas, S.P. Sanyal, Pressure-induced structural phase transformation and elastic properties of transition metal mononitrides, J. of Phys and Chem. Of Solids 68 (2007) 148-152.

DOI: 10.1016/j.jpcs.2006.09.022

Google Scholar

[21] P. Ojha, M. Aynyas, S.P. Sanyal, High pressure behavior of TiX (X = C, N, O) compounds, J. of Optoelectronics and Advanced Materials 2 (2008) 50-56.

Google Scholar

[22] C. Kittle, Introduction to Solid State Physics, Wiley Eastern Limited, New Delhi (1995).

Google Scholar

[23] A. Svane, G. Santi, Z. Szotek, W.M. Temmerman, P. Strange, M. Horne, G. Vaitheeswaran, V. Kanchana, L. Petit, H. Winter, Electronic structure of Sm and Eu chalcogenides, Phys Status Solidi B 241 (2004) 3185–3192.

DOI: 10.1002/pssb.200405226

Google Scholar

[24] A Gour, S. Singh, R. K. Singh, Study of high-pressure phase transition of CeTe and EuTe through three-body interaction potential approach, J Phys Chem Solids 69 (2008) 1669–1675.

DOI: 10.1016/j.jpcs.2007.12.007

Google Scholar

[25] M. Born, K. Hung, Dynamical Theory of Crystal Lattice, Clarendon, Oxford, (1954).

Google Scholar

[26] J. Wang, S. Yip, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993) 4182-4185.

DOI: 10.1103/physrevlett.71.4182

Google Scholar