Electrical Stimulation Optimization in Bioreactors for Tissue Engineering Applications

Article Preview

Abstract:

We review here the current research status on bioreactors for tissue engineering with cell electrical stimulation. Depending on the cell types, electrical stimulation has distinct objectives, in particular being employed both to mimic and enhance the endogenous electricity measured in the natural regeneration of living organisms as well as to mimic strain working conditions for contractible tissues (for instance muscle and cardiac tissues). Understanding the distinct parameters involved in electrical stimulation is crucial to optimize its application. The results presented in the literature and reviewed here reveal that the application of electrical stimulation can be essential for tissue engineering applications.

You have full access to the following eBook

Info:

Periodical:

Pages:

314-323

Citation:

Online since:

April 2019

Export:

* - Corresponding Author

[1] G. Vunjak-Novakovic, I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer and L. E. Freed, Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of Tissue-Engineered Cartilage, J Orthop. Res. 17 (1999) 130.

DOI: 10.1002/jor.1100170119

Google Scholar

[2] R. L. Carrier, M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, L. E. Freed, G. Vunjak-Novakovic, Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization, Biotechnol. Bioeng. 64 (1999) 580.

DOI: 10.1002/(sici)1097-0290(19990905)64:5<580::aid-bit8>3.0.co;2-x

Google Scholar

[3] DuBois-Reymond, E. Vorla¨ufiger Abriss einer Untersuchung uber den sogenannten Froschstrom und die electomotorischen Fische. Ann. Phy. U. Chem. 58 (1843) 1–30.

DOI: 10.1002/andp.18431340102

Google Scholar

[4] R. B. Borgen, What Is the Role of Naturally Produced Electric Current in Vertebrate Regeneration and Healing?, International Review of Cytology, 76 (1982) 245.

DOI: 10.1016/s0074-7696(08)61793-3

Google Scholar

[5] B. Song, Y. Gu, J. Pu, B. Reid, Z. Zhao and M. Zhao, Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo, Nature Protocols 2 (2007) 1479.

DOI: 10.1038/nprot.2007.205

Google Scholar

[6] F. Pires, Q. Ferreira, C. A.V. Rodrigues, J. Morgado, F. Castelo Ferreira, Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering, Biochimica et Biophysica Acta 1850 (2015) 1158–1168.

DOI: 10.1016/j.bbagen.2015.01.020

Google Scholar

[7] N. Selvamurugan, Z. He, D. Rifkin, B. Dabovic and N. C. Partridge, Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-𝛽 Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation, Stem Cells International 2017 (2017) 2450327.

DOI: 10.1155/2017/2450327

Google Scholar

[8] A. N. Koppes, A. M. Seggio and D. M. Thompson, Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields, J. Neural Eng. 8 (2011) 046023.

DOI: 10.1088/1741-2560/8/4/046023

Google Scholar

[9] G. H. Jin and G. H. Kim, The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/b-TCP based bio-composites on cellular activities for bone tissue regeneration, J. Mater. Chem. B1 (2013) 1439.

DOI: 10.1039/c2tb00338d

Google Scholar

[10] R. Balint, N. J. Cassidy and S. H. Cartmell, Electrical Stimulation: A Novel Tool for Tissue Engineering, Tissue Engineering: Part B19 (2013) 48.

DOI: 10.1089/ten.teb.2012.0183

Google Scholar

[11] N. Bursac, M. Papadaki, R. J. Cohen, F.J. Schoen, S. R. Eisenberg, R. Carrier, G. Vunjak-Novakovic, L. E. Freed, Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies, Am J Physiol. 277 (1999) H433.

DOI: 10.1152/ajpheart.1999.277.2.h433

Google Scholar

[12] W.-H. Zimmermann, C. Fink, D. Kralisch, U. Remmers, J. Weil, T. Eschenhagen, Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes, Biotechnol. Bioeng. 68 (2000) 106-14.

DOI: 10.1002/(sici)1097-0290(20000405)68:1<106::aid-bit13>3.0.co;2-3

Google Scholar

[13] G. H. Altman, R. L. Horan, P. R. H. Stark, I. Martin, J. Farhadi, J. C. Richmond, G. Vunjak-Novokovic and D. L. Kaplan, Cell Differentiation by Mechanical Stress, FASEB J. 16 (2001) 270–272; G H. Altman et al., Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain For Tissue Engineering, Transactions of the ASME 124 (2002) 742.

DOI: 10.1115/1.1519280

Google Scholar

[14] C. A. Cook, P. Y. Huri, B. P. Ginn, J. Gilbert-Honick, S. M. Somers, J. P. Temple, H.-Q. Mao and W. L. Grayson, Characterization of a Novel Bioreactor System for 3D Cellular Mechanobiology Studies, Biotechnology and Bioengineering 113 (2016) 1825-1837.

DOI: 10.1002/bit.25946

Google Scholar

[15] G. H. Jin, G.-H. Yang, G. H. Kim, Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells, Journal of Biomedical Materials Research Part B103 (2015) 935-948.

DOI: 10.1002/jbm.b.33268

Google Scholar

[16] P. Morouço, S. Biscaia, T. Viana, M. Franco, C. Malça, A. Mateus, C. Moura, F. Castelo Ferreira, G. Mitchell and N. Alves, Fabrication of Poly(-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles, BioMed Research International 2016 (2016) 1596157.

DOI: 10.1155/2016/1596157

Google Scholar

[17] P. Morouço, W. Lattanzi and N. Alves, Four-Dimensional bioprinting as a new era for tissue engineering and regenerative medicine, Front. Bioeng. Biotechnol. 17 (2017) 61.

DOI: 10.3389/fbioe.2017.00061

Google Scholar

[18] S S Kim, H Utsunomiya, J A Koski, B M Wu, M J Cima, J Sohn, K Mukai, L G Griffith, and J P Vacanti, Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels, Ann Surg. 228 (1998) 8–13.

DOI: 10.1097/00000658-199807000-00002

Google Scholar

[19] M. Radisic, M. Euloth, L. Yang,R. Langer, L. E. Freed, G. Vunjak-Novakovic, High-Density Seeding of Myocyte Cells for Cardiac Tissue Engineering, Biotechnol. Bioeng. 82 (2003) 403.

DOI: 10.1002/bit.10594

Google Scholar

[20] A. Marsano, R. Maidhof, N. Tandon, J. Gao, Y. Wang, G. Vunjak-Novakovic, Engineering of functional contractile cardiac tissues cultured in a perfusion system, 30th Annual International IEEE EMBS Conference 2008 (2008) 3590.

DOI: 10.1109/iembs.2008.4649982

Google Scholar

[21] A. A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci. 3 (2015) 231-245.

DOI: 10.1039/c4bm00291a

Google Scholar

[22] Y.-C. Li, Y. S. Zhang, A. Akpek, S. R. Shin and A. Khademhosseini, 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials, Biofabrication 9 (2017) 012001.

DOI: 10.1088/1758-5090/9/1/012001

Google Scholar

[23] R. L. Truby and J. A. Lewis, Printing soft matter in three dimensions, Nature 540 (2016) 371–378.

DOI: 10.1038/nature21003

Google Scholar

[24] B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma, and F. Xu, 4D Bioprinting for Biomedical Applications, Trends in Biotechonology 34 (2016) 746-756.

DOI: 10.1016/j.tibtech.2016.03.004

Google Scholar

[25] R. Pereira, D. Freitas, A. Tojeira, H. Almeida, N. Alves, P. Bártolo, Computer modelling and simulation of a bioreactor for tissue engineering, International Journal of Computer Integrated Manufacturing, 27 (2013) 1-14.

DOI: 10.1080/0951192x.2013.812244

Google Scholar

[26] P. Faria, P. Cavaleiro Miranda, Alberto Leal, Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis, Conf Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009) 1:1596-9.

DOI: 10.1109/iembs.2009.5334121

Google Scholar

[27] P. Cavaleiro Miranda, P. Faria and M. Hallet, What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS, Clinical Neurophysiology, 120 (2009) 1183-87.

DOI: 10.1016/j.clinph.2009.03.023

Google Scholar

[28] P. Faria, M. Hallet, P. Cavaleiro Miranda, A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS, Journal of Neural Engineering. 8 (2011) 066017.

DOI: 10.1088/1741-2560/8/6/066017

Google Scholar

[29] R. Salvador, C. Wenger and P. C. Miranda, Investigating the cortical regions involved in MEP modulation in tDCS, Front Cell Neurosci, 9 (2015) 405.

DOI: 10.3389/fncel.2015.00405

Google Scholar

[30] J. Hoon Kim, T. Hyung Lee, Y. Mi Song, I. Sook Kim, T. Hyung Cho, S. Jung Hwang and S. June Kim., An Implantable Electrical Bioreactor for Enhancement of Cell Viability, 33rd Annual International Conference of the IEEE EMBS (2011) 3601.

DOI: 10.1109/iembs.2011.6090603

Google Scholar

[31] R. Maidhof, N. Tandon, E. Jung Lee, J. Luo1, Y. Duan, K. Yeager, E. Konofagou and G. Vunjak-Novakovic, Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue, J Tissue Eng Regen Med 6 (2011) e12-e23.

DOI: 10.1002/term.525

Google Scholar

[32] L.L. Y. Chiu, K. Janic and M. Radisic, Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel, Int. J. Organs 35 (2012) 237-250.

DOI: 10.5301/ijao.5000084

Google Scholar

[33] N. Tandon, A. Taubman, E. Cimetta, L. Saccenti, and G. Vunjak-Novakovic, Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue, Conf. Proc. IEEE Eng Med Biol Soc. 2013 (2013) 6219–6223.

DOI: 10.1109/embc.2013.6610974

Google Scholar

[34] B. Wang, G. Wang, F. To, J. R. Butler, A. Claude, R. M. McLaughlin, L. N. Williams, A. L. de Jongh Curry and J. Liao, Myocardial Scaffold-based Cardiac Tissue Engineering: Application of Coordinated Mechanical and Electrical Stimulations, Langmuir 29 (2013) 11109–11117.

DOI: 10.1021/la401702w

Google Scholar

[35] L. Lu and U. Ravens, The use of a novel cardiac bioreactor system in investigating fibroblast physiology and its perspectives, Organogenesis 9 (2013) 82–86.

DOI: 10.4161/org.25014

Google Scholar

[36] K. Ye Morgan and L. Deems Black, Mimicking Isovolumic Contraction with Combined Electromechanical Stimulation Improves the Development of Engineered Cardiac Constructs, Tissue Engineering: Part A 20 (2014) 1654-1667.

DOI: 10.1089/ten.tea.2013.0355

Google Scholar

[37] M. Dodel, N. Hemmati Nejad, S. Hajir Bahrami, M. Soleimani, L. Mohammadi Amirabad, H. Hanaee-Ahvaz, A. Atashi, Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration, Biologicals 46 (2017) 99-107.

DOI: 10.1016/j.biologicals.2017.01.007

Google Scholar

[38] G. Yang, H. Long, X. Ren, K. Ma, Z. Xiao, Y. Wang and Y. Guo, Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field, Develop. Growth Differ. 59 (2017), 70–82.

DOI: 10.1111/dgd.12340

Google Scholar

[39] L. Lu, M. Mende, X. Yang, H.-F. Ko¨rber, H.-J. Schnittler, S. Weinert, J. Heubach, C. Werner and U. Ravens, Design and Validation of a Bioreactor for Simulating the Cardiac Niche: A System Incorporating Cyclic Stretch, Electrical Stimulation, and Constant Perfusion, Tissue Engineering: Part A19 (2013) 403-414.

DOI: 10.1089/ten.tea.2012.0135

Google Scholar

[40] L. M. Amirabad, M. Massumi, M. Shamsara, I. Shabani, A. Amari, M. M. Mohammadi, S. Hosseinzadeh, S. Vakilian, S. K. Steinbach, M. R. Khorramizadeh, M. Soleimani, and J. Barzin, Enhanced cardiac differentiation of human CVD patient specific iPS cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds, ACS Appl. Mater. Interfaces, 9 (2017) 6849–6864.

DOI: 10.1021/acsami.6b15271

Google Scholar

[41] H. Long, G. Yang and Z. Wang, Galvanotactic Migration of EA.Hy926 Endothelial Cells in a Novel Designed Electric Field Bioreactor, Cell Biochem Biophys 61 (2011)481–491.

DOI: 10.1007/s12013-011-9231-3

Google Scholar

[42] S.M. Ross, Combined DC and ELF Magnetic Fields Can Alter Cell Proliferation, Bioelectrornagnetics 11 (1990) 27-36.

DOI: 10.1002/bem.2250110105

Google Scholar

[43] G. S. Pell, Y. Roth and A. Zangen, Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms, Progress in Neurobiology 93 (2011) 59-98.

DOI: 10.1016/j.pneurobio.2010.10.003

Google Scholar

[44] P. C. Grunert, A. Jonitz-Heincke, Y. Su, R. Souffrant, D. Hansmann, H. Ewald, A. Kru¨ger, W. Mittelmeier, R. Bader, Establishment of a Novel In Vitro Test Setup for Electric and Magnetic Stimulation of Human Osteoblasts, Cell Biochem. Biophys.70 (2014) 805-817.

DOI: 10.1007/s12013-014-9984-6

Google Scholar

[45] M. Cioffi, J. Ku ̈ffer, S. Stro ̈bel, G. Dubini, I. Martin and D. Wendt, Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: Macro-scale and micro-structured models, Journal of Biomechanics 41 (2008) 2918–2925.

DOI: 10.1016/j.jbiomech.2008.07.023

Google Scholar

[46] D. W. Hutmacher and H. Singh, Computational fluid dynamics for improved bioreactor design and 3D culture, Trends in Biotechnology 26 (2008) 166.

DOI: 10.1016/j.tibtech.2007.11.012

Google Scholar

[47] A. Sohail, K. Maqbool, A. Asif, H. Ahmad, Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering, World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering 9 (2015) 84.

Google Scholar

[48] E. G. F. Mercuri, A. L. Daniel, M. B. Hecke and L. Carvalho, Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling, Med. Eng. Phys. 38 (2016) 904-910.

DOI: 10.1016/j.medengphy.2016.04.018

Google Scholar