Effect of Chitosan and Alginate Concentration on Size and Bactericidal Activity against Escherichia coli of Chitosan/Alginate/Silver Nanoparticle Beads

Article Preview

Abstract:

Silver nanoparticles have been used in combination with biological polymer for antibacterial application. This study prepared chitosan/alginate/AgNP beads with varying chitosan and alginate concentration to use as an antibacterial material. The sizes of neat beads were larger (1286 ± 172, 1344 ± 142 and 1529 ± 73 μm for C1, C2 and C3, respectively) with increasing concentration of chitosan and alginate. Moreover, smaller beads were observed for the chitosan/alginate/AgNP beads, in which their sizes were 1151 ± 201, 1261 ± 204 and 1324 ± 198 µm for S1, S2 and S3, respectively, when compared to the chitosan/alginate beads. Furthermore, the minimum bactericidal concentration (MBC) of chitosan/alginate/AgNP beads against E. coli was 10, 10 and 3 µg/ml for S1, S2 and S3, respectively. This study suggested that the beads with the higher concentration of chitosan and alginate resulted in the greater bactericidal activity. Therefore, the chitosan/alginate/AgNP beads prepared in this study showed the bactericidal activity which can be used for antibacterial application.

You have full access to the following eBook

Info:

Periodical:

Pages:

54-59

Citation:

Online since:

October 2016

Export:

* - Corresponding Author

[1] R. Foldbjerg, P. Olesen, M. Hougaard, D.A. Dang, H.J. Hoffmann and H. Autrup, PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 190 (2009) 156-162.

DOI: 10.1016/j.toxlet.2009.07.009

Google Scholar

[2] A. Ivask, I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, H. Vija, A. Kakinen, T. Titma, M. Heinlaan, M. Visnapuu, D. Koller, V. Kisand and A. Kahru, Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLOS One. 9 (2014).

DOI: 10.1371/journal.pone.0102108

Google Scholar

[3] F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach and Y. Av-Gay, Synthesis, characterisation, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 6 (2010).

DOI: 10.1016/j.nano.2010.02.001

Google Scholar

[4] H.Y. Lee, H.K. Park, Y.M. Lee, K. Kim and S.B. Park, A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun. 28 (2007) 2959-2961.

DOI: 10.1039/b703034g

Google Scholar

[5] K. Chaloupka, Y. Malam and A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28 (2010) 580-588.

DOI: 10.1016/j.tibtech.2010.07.006

Google Scholar

[6] A.F. Martins, J.P. Monteiro, E.G. Bonafe, A.P. Gerola, C.T.P. Silva, E.M. Girotto, A.F. Rubira and E.C. Muniz, Bactericidal activity of hydrogel beads based on N, N, N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chin Chem Lett. 26 (2015).

DOI: 10.1016/j.cclet.2015.04.032

Google Scholar

[7] A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro and S. Paoletti, Non-cytotoxic silver nnaoparticles-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 10 (2009).

DOI: 10.1021/bm900039x

Google Scholar

[8] J. Stojkovska, D. Kostic, Z. Jovanovic, M. Vukasinovic-Sekulic, V. Miskovic-Stankovic and B. Obradovic, A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydr Polym. 111 (2014) 305-314.

DOI: 10.1016/j.carbpol.2014.04.063

Google Scholar

[9] A.F. Martins, H.D.M. Follmann, J.P. Monteiro, E.G. Bonafe, S. Nocchi, C.T.P. Silva, C.V. Nakamura, E.M. Girotto, A.F. Rubira and E.C. Muniz, Polyelectrolyte complex containing silver nanoparticles with antitumor property on Caco-2 colon cancer cells. Int J Biol Macromol. 79 (2015).

DOI: 10.1016/j.ijbiomac.2015.05.036

Google Scholar

[10] N.R. Jana, L. Gearheart and C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun. (2001) 617-618.

DOI: 10.1039/b100521i

Google Scholar

[11] W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang and Y.B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl Microbiol Biotechnol, 85 (2010) 1115-1122.

DOI: 10.1007/s00253-009-2159-5

Google Scholar

[12] W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ou-Yang, and Y.B. Chen, Antibacterial effect of silver nanoparticles on Staphylococcus aureus, Biometals, 24 (2011) 135-141.

DOI: 10.1007/s10534-010-9381-6

Google Scholar

[13] E. Torres, Y.N. Mata, M.L. Blazquez, J.A. Munoz, F. Gonzalez and A. Ballester, Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir. 21 (2005) 7951-7958.

DOI: 10.1021/la046852k

Google Scholar

[14] P. Pankongadisak, U.R. Ruktanonchai, P. Supaphol and O. Suwantong, Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int. 64 (2015) 275-283.

DOI: 10.1002/pi.4787

Google Scholar

[15] P. Shi, P. He, T.K.H. The, Y.S. Morsi and J.C.H. Goh, Parametric analysis of shape changes of alginate beads. Powder Technology. 210 (2011) 60-66.

DOI: 10.1016/j.powtec.2011.02.023

Google Scholar

[16] A. Landriscina, J. Rosen and A.J. Friedman, Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine. 10 (2015) 1609-19.

DOI: 10.2217/nnm.15.7

Google Scholar