Frequency Domain Analysis of Fluidized Beds with Vibration Time Series of the Bed Wall

Article Preview

Abstract:

Monitoring of fluidized beds operation is important in industrial applications. Collecting fluidize bed wall vibration is a non-intrusive method that can be used to characterize bed hydrodynamics. In the present work, the vibration of a lab-scale fluidized bed was measured at different operating conditions as well as the empty bed. It was shown that vibration of the empty bed is as significant as that of the fluidized bed. Therefore, the vibration signal was decomposed into two distinct signals, coherent and inherent signals. The inherent signal was used to reflect the bed hydrodynamics. The power spectral density of inherent vibration signal showed that the increasing aspect ratio of the bed leads to an increase in the intensity of vibrations especially at high frequencies. Moreover, there are first, second and so forth harmonics for which their intensities decrease as the frequency is increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

477-481

Citation:

Online since:

September 2013

Export:

Price:

[1] F. Johnsson, R. C., J. C. Zijerveld, C. M. Schouten, V. d. Bleek, and B. Leckner, International Journal of Multiphase Flow 26 (2000) 663.

DOI: 10.1016/s0301-9322(99)00028-2

Google Scholar

[2] J. C. Schouten and C. M. V. d. Bleek, AIChE Journal 44 (1998) 48.

Google Scholar

[3] J. Gubis, H. R. Norouzi, N. Mostoufi, and R. Zarghami, Journal of Physics: Conference Series 423 (2013) No. 12025.

Google Scholar

[4] F. Karimi, R. Sotudeh-Gharebagh, R. Zarghami, M. Abbasi, and N. Mostoufi, Korean Journal of Chemical Engineering 29 (2012) 595.

DOI: 10.1007/s11814-011-0216-0

Google Scholar

[5] N. Salehi-Nik, R. Sotudeh-Gharebagh, N. Mostoufi, R. Zarghami, and M. J. Mahjoob, International Journal of Multiphase Flow 35 (2009) 1011.

DOI: 10.1016/j.ijmultiphaseflow.2009.06.010

Google Scholar

[6] H. Azizpour, R. Sotudeh-Gharebagh, R. Zarghami, M. Abbasi, N. Mostoufi, and M. J. Mahjoob, International Journal of Multiphase Flow 37 (2011) 788.

DOI: 10.1016/j.ijmultiphaseflow.2011.02.001

Google Scholar

[7] M. Shiea, R. Sotudeh-Gharebagh, H. Azizpour, N. Mostoufi, and R. Zarghami, Particulate Science and Technology 31 (2013) 10.

DOI: 10.1080/02726351.2011.606876

Google Scholar

[8] M. R. Tamadondar, H. Azizpour, R. Zarghami, N. Mostoufi, and J. Chaouki, Advanced Powder Technology 23 (2012) 349.

DOI: 10.1016/j.apt.2011.04.012

Google Scholar

[9] H. T. Bi, J. R. Grace, and K. S. Lim, Industrial and Engineering Chemistry Research 34 (1995) 4003.

Google Scholar

[10] L. T. Fan, T. -C. Ho, and W. P. Walawender, AIChE Journal 29 (1983) 33.

Google Scholar

[11] Y. Zhang, H. T. Bi, J. R. Grace, and C. Lu, AIChE Journal 56 (2010) 869.

Google Scholar

[12] D. Vervloet, J. Nijenhuis, and J. R. van Ommen, Powder Technology 197 (2010) 36.

Google Scholar

[13] M. Abbasi, R. Sotudeh-Gharebagh, N. Mostoufi, R. Zarghami, and M. J. Mahjoob, AIChE Journal 56 (2010) 597.

DOI: 10.1002/aic.12046

Google Scholar

[14] H. Azizpour, R. Sotudeh-Gharebagh, R. Zarghami, and N. Mostoufi, Particuology 10 (2012) 292.

DOI: 10.1016/j.partic.2011.11.006

Google Scholar

[15] M. Abbasi, R. Sotudeh-Gharebagh, N. Mostoufi, and M. J. Mahjoob, Powder Technology 196 (2009) 278.

DOI: 10.1016/j.powtec.2009.08.012

Google Scholar

[16] P. D. Welch, IEEE Trans. Audio Electroacoust AU-15 (1967) 70.

Google Scholar

[17] J. van der Schaaf, J. C. Schouten, F. Johnsson, and C. M. van den Bleek, International Journal of Multiphase Flow 28 (2002) 865.

DOI: 10.1016/s0301-9322(01)00090-8

Google Scholar