Electrooxidation of Methanol on Carbon Supported Gold Nanoparticles

Article Preview

Abstract:

Activated carbon supported gold nanoparticles (Au/C) were prepared by a chemical reduction process using NaBH4 as a reducing agent. The characterization of transmission electron microscope indicated that the Au nanoparticles (AuNPs) in the Au/C catalyst were highly well dispersed on the carbon support. The catalytic activity of the Au/C catalyst for the methanol electrooxidation (MEO) was investigated by the cyclic voltammetry (CV). The results displayed that the Au/C catalyst exhibited a favorable catalytic activity towards the MEO in alkaline solution. Moreover, the competitive adsorption between OH- and CH3OH on the surface of the AuNPs in the Au/C catalyst existed in the course of the MEO. Based on this competitive adsorption, the mechanism of the MEO on the Au/C catalyst was further investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-236

Citation:

Online since:

March 2013

Authors:

Export:

Price:

[1] R.N. Singh, A. Singh and Anindita: J. Solid State Electrochem. Vol. 13 (2009), p.1259

Google Scholar

[2] R.N. Singh, A. Singh and Anindita: Int. J. Hydrogen Energy Vol. 34 (2009), p. (2052)

Google Scholar

[3] Y. Zhao, X. Yang, J. Tian, F. Wang and L. Zhan: Int. J. Hydrogen Energy Vol. 35 (2010), p.3249

Google Scholar

[4] X. Guo, D.J. Guo, X.P. Qiu, L.Q. Chen and W.T. Zhu: Electrochem. Commun. Vol. 10 (2008), p.1748

Google Scholar

[5] J. Jia, L. Cao and Z. Wang: Langmuir Vol. 24 (2008), p.5932

Google Scholar

[6] Y.K. Park, S.H. Yoo and S. Park: Langmuir Vol. 24 (2008), p.4370

Google Scholar

[7] J. Luo, L. Wang, D. Mott, P.N. Njoki, Y. Lin, T. He, Z. Xu, B.N. Wanjana, I.I.S. Lim and C.J. Zhong: Adv. Mater. Vol. 20 (2008) p.4342

DOI: 10.1002/adma.200703009

Google Scholar

[8] M. Haruta, T. Kobayashi, H. Sano and N. Yamada: Chem. Lett. Vol. 16 (1987), p.405

Google Scholar

[9] C. Moreno-Castilla, F. Carrasco-Marín, F. Maldonado-Hódar and J. Rivera-Utrilla. Carbon Vol. 36 (1998), p.145

DOI: 10.1016/s0008-6223(97)00171-1

Google Scholar

[10] S. Yan, S. Zhang, Y. Lin and G. Liu: J. Phys. Chem. C Vol. 115 (2011), p.6986

Google Scholar

[11] S. Yan and S. Zhang: Int. J. Hydrogen Energy Vol. 36 (2011), p.13392

Google Scholar

[12] S. Yan and S. Zhang: Int. J. Hydrogen Energy Vol. 37 (2012), p.9636

Google Scholar

[13] Z. Borkowska, A. Tymosiak-Zielinska and R. Nowakowski: Electrochim. Acta Vol. 49 (2004), p.2613

Google Scholar

[14] N. Tateishi, K. Nishimura, K. Yahikozawa, M. Nakagawa, M. Yamada and Y. Takasu: J. Electroanal. Chem. Vol. 352 (1993), p.243

Google Scholar

[15] K. Yahikozawa, K. Nishimura, M. Kumazawa, N. Tateishi, Y. Takasu, K. Yasuda and Y. Matsuda: Electrochim. Acta, Vol. 37 (1992), p.453

DOI: 10.1016/0013-4686(92)87035-x

Google Scholar

[16] Z. Liu, B. Guo, L. Hong and T.H. Lim: Electrochem. Commun. Vol. 8 (2006), p.83

Google Scholar

[17] Z. Borkowska, A. Tymosiak-Zielinska and G. Shul: Electrochim. Acta, Vol. 49 (2004), p.1209.

Google Scholar

[18] J. Zhang, P. Liu, H. Ma and Y. Ding: J. Phys. Chem. C Vol. 111 (2007), p.10382

Google Scholar

[19] F. Yong, H. Ma, X. Wang, X. Feng, S. Huang, J. Jiang and S. Chen: Electrochim. Acta Vol. 51 (2006), p.3743

Google Scholar

[20] A. Hamelin: J. Electroanal. Chem. Vol. 407 (1996), p.1

Google Scholar

[21] D. Kramer, R.N. Viswanath and J. Weissmüller: Nano Lett. Vol. 4 (2004), p.793

Google Scholar

[22] F. Silva and A. Martins: Electrochim. Acta Vol. 44 (1998), p.919

Google Scholar

[23] M. Avramov-Ivić, V. Jovanović, G. Vlajnić and J. Popić: J. Electroanal. Chem. Vol. 423 (1997), p.119

Google Scholar

[24] K.A. Assiongbon and D. Roy: Surf. Sci. Vol. 594 (2005), p.99

Google Scholar

[25] A. Chen and J. Lipkowski: J. Phys. Chem. B Vol. 103 (1999), p.682

Google Scholar