Effects of Substrate Temperature on the Microstructure and Properties of Al-Doped ZnO Thin Films by DC Magnetron Sputtering from AZOY® Target

Article Preview

Abstract:

Transparent conducting Al-doped ZnO (AZO) thin films were deposited on soda-lime glass substrates by DC magnetron sputtering with a sintered ceramic target, AZOY® that contains a small amount of Y2O3 in addition to Al2O3 and ZnO. The effect of substrate temperatures (Ts) on the structural, electrical and optical properties of the prepared AZO films was evaluated extensively. By elevating Ts, the electrical conductivity of the films could be effectively improved from 1.68 ×10-3 cm (no substrates heating) to a minimum resistivity of 4.6210-4 cm at Ts = 400oC with an average visible transmittance (400~800nm) of ~80%. It revealed that substrate heating is closely related to the crystallinity and the surface roughness of the deposited films. It is noteworthy that the transmittance in the NIR region was also improved considerably as compared to those using alloy targets by reactive magnetron sputtering and even slightly higher than those using Al-doped ZnO (1 wt.%) ceramic targets by RF sputtering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-112

Citation:

Online since:

January 2013

Export:

Price:

[1] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000), 159-172.

Google Scholar

[2] T. Minami, Thin Solid Films 516 (2008) 5822-5828.

Google Scholar

[3] K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide, first ed., Springer, New York, (2007).

Google Scholar

[4] T. Minami, H. Sato, H Nanto, S. Takata, Thin Solid Films 176 (1989) 277-282.

Google Scholar

[5] T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24 (1985) L781-L784.

Google Scholar

[6] B. Szyszka, Thin Solid Films 351 (1999) 164-169.

Google Scholar

[7] R. Kaur, A.V. Singh, R.M. Mehra, J. Non-Cryst. Solids 352 (2006) 2335-2338.

Google Scholar

[8] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K. -U. Osten, K. Dietrich, R. Rix, Surf. Coat. Technol. 200 (2005) 236-240.

DOI: 10.1016/j.surfcoat.2005.01.019

Google Scholar

[9] T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366 (2000) 63-68.

Google Scholar

[10] P.C. Yao, S.T. Hang, M.J. Wu, and W.T. Shiao, Thin Solid Films 520 (2012) 2846-2854.

Google Scholar

[11] T. Minami, H. Sato, T. Sonoda, H. Nanto, S. Takata, Thin Solid Films 171 (1989) 307-311.

DOI: 10.1016/0040-6090(89)90637-8

Google Scholar

[12] O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller, B. Rech, Thin Solid Films 442 (2003) 80-85.

Google Scholar

[13] J.F. Chang, M.H. Hon, Thin Solid Films 386 (2001) 79-86.

Google Scholar

[14] M. Chen, Z.L. Pei, X. Wang, C. Sun, L.S. Wen, J. Vac. Sci. Technol. A 19 (2001) 963-970.

Google Scholar

[15] J.F. Chang, C.C. Shen, M.H. Hon, Ceramics International 29 (2003) 245-250.

Google Scholar

[16] J.H. Jou, M.Y. Han, D.J. Cheng, J. Appl. Phys. 71 (1992) 4333-4336.

Google Scholar

[17] K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films 305 (1997) 201-209.

Google Scholar

[18] T.L. Tansley, D.F. Neely, Thin Solid Films 121 (1984) 95-107.

Google Scholar

[19] S.S. Lin, J.L. Huang, P. Sajgalik, Surf. Coat. Technol. 190 (2005) 39-47.

Google Scholar

[20] E. Fortunato A., Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira, R. Martins, Thin Solid Films 442 (2003) 121-126.

Google Scholar

[21] C. Oliveira, L. Rebouta, T. de Lacerda-Arôso, S. Lanceros-Mendez, T. Viseu, C.J. Tavares, J. Tovar, S. Ferdov, E. Alves, Thin Solid Films 517 (2009) 6290-6293.

DOI: 10.1016/j.tsf.2009.02.069

Google Scholar

[22] Z.L. Pei, C. Sun, M.H. Tan, J.Q. Xiao, D.H. Guan, R.F. Huang, L.S. Wen, J. Appl. Phys. 90 (2001) 3432-3436.

Google Scholar

[23] W. Beyer, J. Hüpkes, H. Stiebig, Thin Solid Films 516 (2007) 147-154.

DOI: 10.1016/j.tsf.2007.08.110

Google Scholar