Copper-Catalyzed-Multicomponent Reaction towards the Synthesis of γ-Hydroxybutyrolactams

Article Preview

Abstract:

Copper-catalyzed-multicomponent reaction has been applied to prepare several examples γ-hydroxybutyrolactams. The synthesis of γ-hydroxybutyrolactams occurred via cascade sequence comprising Sonogashira coupling, heterocyclization and nucleophilic addition reactions. The reaction involved the starting materials of (Z)-3-iodobutenoic acid, terminal alkynes and butylamine. The results showed that electronic effect of terminal alkynes played important role in synthesis of γ-hydroxybutyrolactams. The multicomponent reaction allowed us to obtain the desired products and to create multiple bonds in one-pot fashion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

151-156

Citation:

Online since:

May 2022

Export:

Price:

* - Corresponding Author

[1] R.M. Wiedhopf, E.R. Trumbull, J.R. Cole, Antitumor agents from Jatropha Macrorhiza (Euphorbiaceae) I: Isolation and characterization of Jatropham, J. Pharm. Sci. 62 (1973), 1206–1207.

DOI: 10.1002/jps.2600620736

Google Scholar

[2] R. Kontnik, J. Clardy, Codinaeopsin, an antimalarial fungal polyketide, Org. Lett. 10 (2008) 4149–4151.

DOI: 10.1021/ol801726k

Google Scholar

[3] C.Y. Gan, Y.Y. Low, N.F. Thomas, T.S. Kam, Rhazinilam–leuconolam–leuconoxine alkaloids from Leuconotis griffithii, J. Nat. Prod. 76 (2013) 957–964.

DOI: 10.1021/np400214y

Google Scholar

[4] S.L. Miller, W.F. Tinto, J.P. Yang, S. McLean, W.F. Reynolds, Axinellamide, a new alkaloid from the marine sponge Axinella sp., Tetrahedron Lett. 36 (1995) 5851–5852.

DOI: 10.1016/00404-0399(50)1175h-

Google Scholar

[5] B. Nay, N. Riache, L. Evanno, Chemistry and biology of non-tetramic γ-hydroxy-γ-lactams and γ-alkylidene-γ-lactams from natural sources, Nat. Prod. Rep. 26 (2009) 1044–1062.

DOI: 10.1039/b903905h

Google Scholar

[6] M.I.D. Mardjan, J.L. Parrain, L. Commeiras, Strategies to access γ-hydroxy-γ-butyrolactams, Synthesis 50 (2018) 1175–1198.

DOI: 10.1055/s-0036-1591886

Google Scholar

[7] D. Cornut, H. Lemoine, O. Kanishchev, E. Okada, F. Albrieux, A.H. Beavogui, A.L. Bienvenu, S. Picot, J.P. Bouillon, M. Médebielle, Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities, J. Med. Chem. 56 (2013) 73–83.

DOI: 10.1021/jm301076q

Google Scholar

[8] K.Y. Seah, S.J. Macnaughton, J.W.P. Dallimore, J. Robertson, Synthesis of pandamarilactone-1, Org. Lett. 16 (2014) 884–887.

DOI: 10.1021/ol4036424

Google Scholar

[9] O.S. Kanishchev, A. Lavoignat, S. Picot, M. Médebielle, J.P. Bouillon, New route to the 5-((arylthio- and heteroarylthio)methylene)-3-(2,2,2-trifluoroethyl)-furan-2(5H)-ones—Key intermediates in the synthesis of 4-aminoquinoline γ-lactams as potent antimalarial compounds, Bioorg. Med. Chem. Lett. 23 (2013) 6167–6171.

DOI: 10.1016/j.bmcl.2013.08.108

Google Scholar

[10] S. Inack-Ngi, R. Rahmani, L. Commeiras, G. Chouraqui, J. Thibonnet, A. Duchêne, M. Abarbri, J.L. Parrain, Copper-catalyzed preparation of γ-alkylidenebutenolides and isocoumarins under mild palladium-free conditions, Adv. Synth. Catal. 351 (2009) 779–788.

DOI: 10.1002/adsc.200800757

Google Scholar

[11] S. Inack-Ngi, K. Cherry, V. Héran, L. Commeiras, J.L. Parrain, A. Duchêne, M. Abarbri, J. Thibonnet, Carboxylate-directed tandem functionalisations of α,β-dihaloalkenoic acids with 1-alkynes: A straightforward access to (Z)-configured, α,β-substituted γ-alkylidenebutenolides, Chem. - Eur. J. 17 (2011) 13692–13696.

DOI: 10.1002/chem.201102570

Google Scholar

[12] J. Zhu, H. Bienaymé, Multicomponent Reactions, Wiley-VCH, Weinheim, (2005).

Google Scholar

[13] R.C. Cioc, E. Ruijter, R.V.A. Orru, Multicomponent reactions: Advanced tools for sustainable organic synthesis, Green Chem. 16 (2014) 2958–2975.

DOI: 10.1039/c4gc00013g

Google Scholar

[14] Y. Hayashi, Pot economy and one-pot synthesis, Chem. Sci. 7 (2016) 866–880.

DOI: 10.1039/c5sc02913a

Google Scholar

[15] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford Unversity Press, Oxford, UK, (1998).

Google Scholar

[16] M.R. Kumar, F.M. Irudayanathan, J.H. Moon, S. Lee, Regioselective one-pot synthesis of isocoumarins and phthalides from 2-iodobenzoic acids and alkynes by temperature control, Adv. Synth. Catal. 355 (2013) 3221–3230.

DOI: 10.1002/adsc.201300561

Google Scholar

[17] M.I.D. Mardjan, J.L. Parrain, L. Commeiras, Copper(I)-catalysed multicomponent reaction: Straightforward access to 5-hydroxy-1 H-pyrrol-2(5H )-ones, Adv. Synth. Catal. 358 (2016) 543–548.

DOI: 10.1002/adsc.201500994

Google Scholar

[18] M.I.D. Mardjan, S. Perie, J.L. Parrain, L. Commeiras, A tunable copper-catalyzed multicomponent reaction towards alkaloid-inspired indole/lactam polycycles, Org. Biomol. Chem. 15 (2017) 3304–3309.

DOI: 10.1039/c7ob00532f

Google Scholar

[19] M.I.D. Mardjan, A. Mayooufi, J.L. Parrain, J. Thibonnet, L. Commeiras, Straightforward access to a great diversity of complex biorelevant γ-lactams thanks to a tunable cascade multicomponent process, Org. Process Res. Dev. 24 (2020) 606–614.

DOI: 10.1021/acs.oprd.9b00438

Google Scholar