The Highly Efficient Inorganic SrF2:Gd3+, Eu3+ Phosphor for Mercury Free Fluorescence Lamps

Article Preview

Abstract:

The strong vacuum ultraviolet (VUV) radiation absorption and energy transfer mechanism is detected in SrF2: Gd3+, Eu3+ fluoride phosphor. The phosphor is synthesized by a wet chemical method followed by reactive atmospheric process (RAP). The Powder XRD analysis shows structural purity. The photoluminescence characteristics of SrF2:Gd3+, Eu3+ phosphor is studied using the remote access of 4B8 window (VUV beamline) of the Beijing Synchrotron Radiation Facility (BSRF) China. In this paper the mechanism of Energy transfer from the Gd3+ to Eu3+ through the cross relaxation process is investigated. The down-conversion of energy from VUV (142 nm) to visible with quantum efficiency (QE) around 124% has been detected. The PL excitation and emission characteristics of the prepared phosphor advocates it as a prominent material for the applications in mercury free fluorescent lighting (MFFL) & Plasma Display Panel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

May 2022

Export:

Price:

* - Corresponding Author

[1] C.R. Ronda, Phosphors for lamps and displays, J. Alloys Compd. 225 (1993) 534-538.

Google Scholar

[2] M. Y. William, Phosphor Handbook, CRC Press is an imprint of the Taylor & Francis Group, ISBN: 0-8493-3564-7.

Google Scholar

[3] B. Liu, Y. Chen, C. Shi, H. Tanga, Y, Tao, Visible quantum cutting in BaF2: Gd, Eu via downconversion, J. Lumin.,101 (2003) 155–159.

DOI: 10.1016/s0022-2313(02)00408-8

Google Scholar

[4] B. Herden, A. García-Fuente, H. Ramanantoanina, T. Jüstel, C. Daul, W. Urland, Photon cascade emission in Pr3+ doped fluorides with CaF2 structure: Application of a model for its prediction, Chemical physics letter. 620 (2015) 29-34.

DOI: 10.1016/j.cplett.2014.12.013

Google Scholar

[5] W. Binder, S. Dislerhoff, J. Cameron, Dosimetric Properties of CaF2: Dy, (a) Proc. II Int. Conf. on Lumin. Dosim. Gatlinberg, 1968, p.45–53; (b) Health Phys., 1969, vol. 17, no. 4, p.613–618.

DOI: 10.1097/00004032-196910000-00010

Google Scholar

[6] A.C. Lucas, R.H. Moss, B.M. Casper, Proc. Int. Conf. on Lumin. Dosim, Sao Paulo (Brazil), 1977, pp.131-139.

Google Scholar

[7] P. Belsare, C. Joshi, S. Moharil, V. Kondawar, P. Muthal, S. Dhopte, Luminescence of Eu2+ in some fluorides prepared by reactive atmosphere processing, J. Alloys Compd. 450 (2008) 468–472.

DOI: 10.1016/j.jallcom.2006.11.008

Google Scholar

[8] A. King, R. Singh, R. Anand, S. K. Behera, B. B. Nayak, Spectroscopic studies of borohydride derived cerium doped zirconia nanoparticles under air and argon annealing conditions, J.Nanopart Res (2021) 23-156.

DOI: 10.1007/s11051-021-05299-x

Google Scholar

[9] J. Zhou, L. Xie, J. Zhong, H. Liang, J. Zhang, M. Wu, Site occupancy and luminescence properties of Eu3+ in double salt silicate Na3LuSi3O9, Optical Materials Express, 8 (2018) 736-743.

DOI: 10.1364/ome.8.000736

Google Scholar

[10] K. Milewska, M. Maciejewski, A. Synak, M. Łapinski, A. Mielewczyk-Gryn, W. Sadowski, B. Koscielska, From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2Glass and Glass-Ceramics Doped with Eu3+ Ions, Materials, 14 (2021) 4490.

DOI: 10.3390/ma14164490

Google Scholar

[11] C. Feldmann, T. JuÈstel, C.R. Ronda, D.U. Wiechert,Quantum efficiency of down-conversion phosphor LiGdF4 :Eu, J. Lumin., 92 (2001) 245-254.

DOI: 10.1016/s0022-2313(00)00240-4

Google Scholar

[12] B. Liua, Y. Chena, C. Shia, H. Tanga, Y. Tao, Visible quantum cutting in BaF2:Gd, Eu via downconversion, J.Lumin, 101 (2003) 155–159.

DOI: 10.1016/s0022-2313(02)00408-8

Google Scholar

[13] R.T. Wegh, H. Donker, K. Oskam, and A. Meijerink, Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion, J. Lumin., 82 (1999) 93-104.

DOI: 10.1016/s0022-2313(99)00042-3

Google Scholar

[14] R. Singh, A. King, B. B. Nayak, Influence of calcination temperature on phase, powder morphology and photoluminescence characteristics of Eu-doped ZnO nanophosphors prepared using sodium borohydride, J. Alloys Compd., 847(2020)156382.

DOI: 10.1016/j.jallcom.2020.156382

Google Scholar

[15] R. Singh, A. King, B. B. Nayak, Phase evolution, powder morphology and photoluminescence exploration of borohydride derived red-emitting Eu3+ doped ZnO nanophosphors, Materials Science in Semiconductor Processing 133 (2021) 105969.

DOI: 10.1016/j.mssp.2021.105969

Google Scholar

[16] R.T. Wegh, H. Donker, K. Oskam, A. Meijerink, Visible quantum cutting in LiGdF4:Eu3+ through downconversion, Science 283 (1999)663-666.

DOI: 10.1126/science.283.5402.663

Google Scholar

[17] S.R. Jaiswal, N. S. Sawala, P.A. Nagpure, V. B. Bhatkar S.K. Omanwar, Visible quantum cutting in Tb3+ doped BaGdF5 phosphor for the plasma display panel, J Mater Sci: Mater Electron 28 (2017)2407–2414.

DOI: 10.1007/s10854-016-5811-8

Google Scholar

[18] S.K. Omanwar, S.R. Jaiswal, N.S. Sawala, K.A. Koparkar, P.A. Nagpure, V. B. Bhatkar, Visible quantum cutting in green-emitting BaF2: Gd3+, Tb3+ phosphor: An approach toward mercury-free lamps, St. petrbergpolytechenical University Journal: Physics and Mathematics 3 (2017) 218-224.

DOI: 10.1016/j.spjpm.2017.06.005

Google Scholar

[19] S.R. Jaiswal, N.S. Sawala, K.A. Koparkar, V. B. Bhatkar, S.K. Omanwar, Ultra-violet to visible quantum cutting in YPO4: Gd3+, Tb3+ phosphor via down-conversion, material discovery, 7 (2017) 15-20.

DOI: 10.1016/j.md.2017.05.003

Google Scholar