Green Up-Conversion Luminescence in Yb/Er Co-Doped AlN Thin Film by RF Magnetron Sputtering

Article Preview

Abstract:

In this research study, aluminum Nitride (AlN) thin film co-doped with erbium and ytterbium has been deposited on Si (100) substrate by RF magnetron Sputtering. After deposition, the film was annealed at 1100 °C in ambient conditions. It’s structural properties were investigated X-ray diffraction (XRD). Thin films morphology is studied using SEM, and EDX provides the chemical composition information. The photoluminescence property of deposited film was investigated by FS5 spectrofluorometer. XRD result revealed that the film has grown along the c-axis oriented in hexagonal wurtzite structure. SEM Result shows that the average size of the particle is 100 nm. The up-conversion luminescence showed intense green and red emission peaks at 530 nm, 552 nm, and 665 nm due to the transition of Er (2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2) with excitation of 984 nm. The excitation wavelength with 483 nm photons produces visible luminescence in the green and red region with 557 and 660 nm due to Erbium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-152

Citation:

Online since:

August 2022

Export:

Price:

* - Corresponding Author

[1] H. Neumann, JH Edgar (ed.). Properties of Group III Nitrides.(EMIS Datareviews Series No. 11). INSPEC, The Institution of Electrical Engineers, London 1994. 302 Seiten, 121 Abbildungen, 77 Tabellen. ISBN 0–85296–818–3 (1995) 910-910.

DOI: 10.1002/crat.2170300704

Google Scholar

[2] C. T. Paul, and R. Tyagi. Wide bandgap compound semiconductors for superior high-voltage power devices, Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs. IEEE, (1993).

DOI: 10.1109/ispsd.1993.297113

Google Scholar

[3] M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, J. A. Higgins, Microwave operation of GaN/AlGaN-doped channel heterostructure field-effect transistors, IEEE Electron Device Letters. 17(7) (1996) 325-327.

DOI: 10.1109/55.506356

Google Scholar

[4] S. Nakamura, G. Fasol The Blue Laser Diode, (1997).

Google Scholar

[5] L. F. Eastman, U. K. Mishra, The toughest transistor yet [GaN transistors]. IEEE spectrum. 39(5) (2002) 28-33.

DOI: 10.1109/6.999791

Google Scholar

[6] W. C. Johnson, J. B. Parson, M. C. Crew, Nitrogen compounds of gallium. iii, The journal of physical chemistry. 36(10) (2002) 2651-2654.

DOI: 10.1021/j150340a015

Google Scholar

[7] R. Juza, H. Hahn, About the crystal structures of Cu3N, GaN and InN metal amides and metal nitrides, Journal of Inorganic and General Chemistry. 239 (3) (1938) 282-287.

Google Scholar

[8] H. P. Maruska, J. J. Tietjen, The preparation and properties of vapor‐deposited single‐crystal‐line GaN, Applied Physics Letters. 15(10) (1969) 327-329.

DOI: 10.1063/1.1652845

Google Scholar

[9] M. Ilegems, R. Dingle, Luminescence of Be‐and Mg‐doped GaN, Journal of Applied Physics. 44(9) (1973) 4234-4235.

DOI: 10.1063/1.1662930

Google Scholar

[10] J. I. Pankove, M. T. Duffy, E. A. Miller, J. E. Berkeyheiser, Luminescence of insulating Be-doped and Li-doped GaN, Journal of Luminescence. 8(1) (1973) 89-93.

DOI: 10.1016/0022-2313(73)90038-0

Google Scholar

[11] O. Lagerstedt, B. Monemar, Luminescence in epitaxial GaN: Cd, Journal of Applied Physics. 45(5) (1974) 2266-2272.

DOI: 10.1063/1.1663574

Google Scholar

[12] B. Monemar, O. Lagerstedt, H. P. Gislason, Properties of Zn‐doped VPE‐grown GaN. I. Luminescence data in relation to doping conditions, Journal of Applied Physics. 51(1) (1980) 625-639.

DOI: 10.1063/1.327318

Google Scholar

[13] J. I. Pankove, J. A. Hutchby, Photoluminescence of ion‐implanted GaN, Journal of Applied Physics. 47(12) (1976) 5387-5390.

DOI: 10.1063/1.322566

Google Scholar

[14] M. Maqbool, I. Ahmad, H. H. Richardson, M. E. Kordesch, Direct ultraviolet excitation of an amorphous AlN: praseodymium phosphor by codoped Gd 3+ cathodoluminescence, Applied Physics Letters. 91(19) (2007) 193511.

DOI: 10.1063/1.2809607

Google Scholar

[15] M. Maqbool, M. E. Kordesch, A. Kayani, Enhanced cathodoluminescence from an amorphous AlN: holmium phosphor by co-doped Gd+3 for optical devices applications, JOSA B. 26(5) (2009) 998-1001.

DOI: 10.1364/josab.26.000998

Google Scholar

[16] M. Maqbool, E. Wilson, J. Clark, I. Ahmad, A. Kayani, Luminescence from Cr+3-doped AlN films deposited on optical fiber and silicon substrates for use as waveguides and laser cavities, Applied optics. 49(4) (2010) 653-657.

DOI: 10.1364/ao.49.000653

Google Scholar

[17] B. Amin, I. Ahmad, M. Maqbool, Conversion of direct to indirect bandgap and optical response of B substituted InN for novel optical devices applications, Journal of lightwave technology. 28(2) (2010) 223-227.

DOI: 10.1109/jlt.2009.2034027

Google Scholar

[18] M. Maqbool, M. E. Kordesch, I. Ahmad, Electron penetration depth in amorphous AlN exploiting the luminescence of AlN: Tm/AlN: Ho bilayers, Current Applied Physics. 9(2) (2009) 417-421.

DOI: 10.1016/j.cap.2008.03.015

Google Scholar

[19] V. I. Dimitrova, P. G. V. Patten, H. Richardson, M. E. Kordesch, Photo-, cathodo-, and electroluminescence studies of sputter deposited AlN: Er thin films, Applied surface science. 175 (2001) 480-483.

DOI: 10.1016/s0169-4332(01)00128-3

Google Scholar

[20] A. L. Martin, C. M. Spalding, V. I. Dimitrova, P. G. V. Patten, M. L. Caldwell, , M. E. Kordesch, H. H. Richardson, Visible emission from amorphous AlN thin-film phosphors with Cu, Mn, or Cr, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 19(4) (2001) 1894-1897.

DOI: 10.1116/1.1353544

Google Scholar

[21] M. L. Caldwell, A. L. Martin, V. I. Dimitrova, P. G. V. Patten, M. E. Kordesch, H. H. Richardson, Emission properties of an amorphous AlN: Cr 3+ thin-film phosphor, App. Phy. Lett. 78(9) (2001) 1246-1248.

DOI: 10.1063/1.1351531

Google Scholar

[22] S. Pimputkar, J. S. Speck, S. P. DenBaars, S. Nakamura, Prospects for LED lighting, Nature photonics. 3(4) (2009) 180-182.

DOI: 10.1038/nphoton.2009.32

Google Scholar

[23] H. H. Richardson, P. G. V. Patten, D. R. Richardson, M. E. Kordesch, Thin-film electroluminescent devices grown on plastic substrates using an amorphous AlN: Tb 3+ phosphor, Applied physics letters. 80(12) (2002) 2207-2209.

DOI: 10.1063/1.1464220

Google Scholar

[24] M. Maqbool, I. Ahmad, H. H. Richardson, M. E. Kordesch, Direct ultraviolet excitation of an amorphous AlN: praseodymium phosphor by codoped Gd 3+ cathodoluminescence, Applied Physics Letters. 91(19) (2007) 193511.

DOI: 10.1063/1.2809607

Google Scholar

[25] W. Mao, B. Kong, X. Yang, E. Nies, Nascent crystallization of a growing chain on a catalyst surface: A nonequilibrium molecular dynamics simulation study, The Journal of Physical Chemistry B. 112(22) (2008) 6753-6761.

DOI: 10.1021/jp8002245

Google Scholar

[26] F. S. Liu, Q. L. Liu, J. K. Liang, J. Luo, H. R. Zhang, Y. Zhang, ... G. H. Rao, Visible and infrared emissions from c-axis oriented AlN: Er films grown by magnetron sputtering, Journal of applied physics. 99(5) (2006) 053515.

DOI: 10.1063/1.2179142

Google Scholar

[27] M. E. Little, M. E. Kordesch, Band-gap engineering in sputter-deposited Sc x Ga 1− x N, Applied Physics Letters. 78(19) (2001) 2891-2892.

DOI: 10.1063/1.1370548

Google Scholar

[28] A. J. Steckl, R. Birkhahn, Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy, Applied Physics Letters. 73(12) (1998) 1700-1702.

DOI: 10.1063/1.122250

Google Scholar

[29] C. Ronning, E. P. Carlson, R. F. Davis, Ion implantation into gallium nitride, Physics Reports. 351(5) (2001) 349-385.

DOI: 10.1016/s0370-1573(00)00142-3

Google Scholar

[30] J. M. Zavada, R. A. Mair, C. J. Ellis, J. Y. Lin, H. X. Jiang, R. G. Wilson, ... R. D. Dupuis, Optical transitions in Pr-implanted GaN, Applied physics letters. 75(6) (1999) 790-792.

DOI: 10.1063/1.124514

Google Scholar

[31] Y. Mita, H. Yamamoto, K. Katayanagi, S. Shionoya, Energy transfer processes in Er3+‐and Yb3+‐doped infrared upconversion materials, Journal of applied physics. 78(2) (1995) 1219-1223.

DOI: 10.1063/1.360361

Google Scholar

[32] N. Managaki, M. Fujii, T. Nakamura, Y. Usui, S. Hayashi, Enhancement of photoluminescence from Yb and Er co-doped Al2O3 films by an asymmetric metal cavity, Applied physics letters. 88(4) (2006) 042101.

DOI: 10.1063/1.2166685

Google Scholar

[33] L. Fu-Sheng, L. Quan-Lin, L. Jing-Kui, L. Jun, S. Jun, Z. Yi, ... R. Guang-Hui, Structure and visible photoluminescence of Sm3+, Dy3+ and Tm3+ doped c-axis oriented AlN films, Chinese Physics. 15(10) (2006) 2445.

DOI: 10.1088/1009-1963/15/10/043

Google Scholar

[34] K. Gurumurugan, H. Chen, G. R. Harp, W. M. Jadwisienczak, H. J. Lozykowski, Visible cathodoluminescence of Er-doped amorphous AlN thin films, Applied physics letters. 74(20) (1999) 3008-3010.

DOI: 10.1063/1.123995

Google Scholar

[35] T. Li, C. Guo, Y. Wu, L. Li, J. H. Jeong, Green upconversion luminescence in Yb3+/Er3+ co-doped ALn (MoO4) 2 (A= Li, Na and K; Ln= La, Gd and Y), Journal of alloys and compounds. 540 (2012) 107-112.

DOI: 10.1016/j.jallcom.2012.04.052

Google Scholar

[36] X. Chen, Z. Liu, Q. Sun, M. Ye, F. Wang, Upconversion emission enhancement in Er3+/Yb3+ co-doped BaTiO3 nanocrystals by tridoping with Li+ ions, Optics Communications. 284(7) (2011) 2046-2049.

DOI: 10.1016/j.optcom.2010.12.007

Google Scholar