Synthesis and Structural Characterization of Ca14NbxIn1-xAs11 (x ≈ 0.85)

Article Preview

Abstract:

Single-crystals of the new compound Ca14NbxIn1xAs11 have been obtained from a solid-state reaction in a sealed Nb ampoule. The initial experiment had been set up with the aim to investigate the effect of electron doping (via In) on the crystal structure and physical properties of Ca14MnAs11. Subsequent single-crystal X-ray diffraction and elemental analysis work suggested that instead of Ca14MnxIn1xAs11, the major product of the reaction is the phase Ca14NbxIn1xAs11. This supposition was corroborated when the title compound was synthesized from a reaction of Ca, In and As in a sealed Nb ampoule, proving that, 1) Mn metal is not included in the structure, and 2) that the inadvertent side reaction of As with the walls of the Nb container is the source of the niobium. The overall structure is isotypic with the tetragonal Ca14AlSb11 structure type (space group I41/acd), although some marked differences between the two must be noted. Current ongoing work is focused on the synthesis of phase pure polycrystalline samples and determination of the physical properties of this unusual transition metal Zintl phase.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

147-151

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] G. Cordier, H. Schäfer, M. Stelter, Z. Anorg. Allg. Chem. 519 (1984) 183–188.

Google Scholar

[2] J.Y. Chan, S.M. Kauzlarich, P. Klavins, R.N. Shelton, D.J. Webb, Chem. Mater. 9 (1997) 3132–3135.

Google Scholar

[3] C. Cox, E.S. Toberer, A. Levchenko, A., S.R. Brown, G.J. Snyder, A. Navrotsky, S.M. Kauzlarich, Chem. Mater. 21 (2009) 1354–1360.

Google Scholar

[4] S.R. Brown, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Chem. Mater. 18 (2006) 1873–1877.

Google Scholar

[5] E.S. Toberer, C. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, G.J. Snyder, Adv. Funct. Mater. 18 (2008) 2795–2800.

Google Scholar

[6] J.P. Makongo, G. Darone, S. -Q. Xia, S. Bobev, J. Mater. Chem. C 4 (2015) 10388–10400.

Google Scholar

[7] J. Prakash, S. Stoyko, L. Voss, S. Bobev, Eur. J. Inorg. Chem. DOI: 10. 1002/ejic. 201600306.

Google Scholar

[8] D. Sanchez-Portal, R.M. Martin, S. M. Kauzlarich, W.E. Pickett, W. E. Phys. Rev. B 65 (2002) 144414.

Google Scholar

[9] A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, J.G. Tobin, J. Am. Chem. Soc. 124 (2002) 9894–9898.

DOI: 10.1021/ja020564y

Google Scholar

[10] A.P. Holm, T.C. Ozawa, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, J.G. Tobin, J. Solid State Chem. 178 (2005) 262–269.

DOI: 10.1016/j.jssc.2004.07.009

Google Scholar

[11] K.S. Burch, A. Schafgans, N.P. Butch, T.A. Sayles, M.B. Maple, B.C. Sales, D. Mandrus, D.N. Basov, Phys. Rev. Lett. 95 (2005) 046401.

DOI: 10.1103/physrevlett.95.046401

Google Scholar

[12] L. Pauling, L. The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, NY, (1960).

Google Scholar

[13] S.M. Kauzlarich, M.M. Thomas, D.A. Odink, M.M. Olmstead, Marilyn M. J. Am. Chem. Soc. 113 (1991) 7205–7208.

Google Scholar

[14] A. Rehr, T.Y. Kuromoto, S.M. Kauzlarich, J. del Castillo, D.J. Webb, Chem. Mater. 6 (1994), 93–99.

Google Scholar

[15] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751–767.

Google Scholar

[16] K. Vidyasagar, W. Hönle, H. -G. von Schnering, Z. Anorg. Allg. Chem. 622 (1996) 518–524.

Google Scholar