Microstructure Evolution Induced by Sliding-Based Surface Thermomechanical Treatments - Application to Pure Copper

Article Preview

Abstract:

In this paper, surface microstructural evolution induced by processes based on repeated sliding (friction) contact such as burnishing or machining is investigated. A set-up designed for simulating contact pressures and cutting speed occurring during machining is used to create a gradient of nanomicro-structure. It is composed of a top surface recrystallized layer and a sub-surface made of ultrafine grains over a depth larger than 100 μm. Induced-mechanical properties as well as resulting wear resistance are discussed. A conclusion is brought on the benefits of this new kind of sliding-based surface mechanical treatments (SMT).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

915-920

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] G. Kermouche, "Scratch-based residual stress-field by scratch-based surface mechanical treatments (superfinishing, polishing, roller burnishing), in Modelisation and simulation of manufacturing processes, J.M. Bergheau, ed., Hermes, 2014, pp.305-320.

DOI: 10.1002/9781118578759.ch6

Google Scholar

[2] T. Hong, J.Y. Ooi, B. Shaw, A numerical simulation to relate the shot peening parameters to the induced residual stresses, Eng. Fail. An. 8 (2008) pp.1097-1110.

DOI: 10.1016/j.engfailanal.2007.11.017

Google Scholar

[3] P. Balland, L. Tabourot, F. Degre, V. Moreau, An investigation of the mechanics of roller burnishing through finite element simulations and experiments, Int. J. Mach. Tools & Man. 65 (2013), pp.29-36.

DOI: 10.1016/j.ijmachtools.2012.09.002

Google Scholar

[4] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering A 375-377 (2004), pp.38-45.

DOI: 10.1016/j.msea.2003.10.261

Google Scholar

[5] W.L. Li, N.R. Tao, K. Lu, Fabrication of a gradient nano-microstructured surface layer on bulk copper by means of a surface mechanical grinding treatment.

DOI: 10.1016/j.scriptamat.2008.05.003

Google Scholar

[6] G. Kermouche, C. Langlade, Mechanical nano-structuring under repeated normal impacts, Materials Science and Engineering, IOP Conference Series, 63 (2014), 012019.

DOI: 10.1088/1757-899x/63/1/012019

Google Scholar

[7] D. Tumbajoy-Spinel, G. Kermouche, S. Descartes, J. -M. Bergheau, V. Lacaille, G. Guillonneau, J. Michler, Identification des propriétés mécaniques des surfaces tribologiquement transformées (TTS) à partir d'essais de nano-indentation et micro-compression de piliers, Matériaux et Techniques, 103 (2015).

DOI: 10.1051/mattech/2015020

Google Scholar

[8] G. Jacquet, G. Kermouche, C. Courbon, D. Tumbajoy, J. Rech, Effect of sliding velocity on microstructural evolution induced in Copper during friction test, Materials Science and Engineering, IOP Conference Series, 63 ( 2014), 012039.

DOI: 10.1088/1757-899x/63/1/012039

Google Scholar

[9] S.Q. Deng, A. Godfrey, W. Liu, C.I. Zhang, Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature, Mat. Sci. & Eng. A. 639 (2015) pp.448-455.

DOI: 10.1016/j.msea.2015.05.017

Google Scholar

[10] V. Chomienne, C. Verdu, J. Rech, F. Valiorgue, Influence of surface integrity of 15-5PH on the fatigue life, Procedia Engineering 66 (2013) pp.274-281.

DOI: 10.1016/j.proeng.2013.12.082

Google Scholar

[11] J.M. Schocley, H.W. Strauss, R.R. Chromik, N. Brodusch, R. Gauvin, E. Irissou, J.G. Legoux, In situ tribometry of cold-sprayed Al-Al2O3 composite coatings, Surf. & Coat. Tech. 215 (2013) pp.350-356.

DOI: 10.1016/j.surfcoat.2012.04.099

Google Scholar