Stacking Fault Formation via 2D Nucleation in PVT Grown 4H-SiC

Article Preview

Abstract:

Synchrotron white beam x-ray topography (SWBXT), synchrotron monochromatic beam x-ray topography (SMBXT), and high resolution transmission electron microscopy (HRTEM) studies have been carried out on stacking faults in PVT grown 4H-SiC crystal. Their fault vectors were determined by SWBXT to be 1/3<-1100>, 1/2<0001>, 1/6<-2203>, 1/12<4-403>, 1/12<-4403>. HRTEM studies reveal their similarity in stacking sequences as limited numbers of bilayers of 6H polytype structure. Simulation results of the two partial dislocations associated with the stacking faults in SMBXT images reveal the opposite sign nature of their Burgers vectors. A mechanism for stacking fault formation via 2D nucleation is postulated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

85-89

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] P. Pirouz, J. L. Demenet, and M. H. Hong, Philos. Mag. A, vol. 81, 1207-1227 (2001).

Google Scholar

[2] J. Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, and H. Lendenmann, Appl. Phys. Lett., vol. 80, 749 (2002).

Google Scholar

[3] P. Pirouz, M. Zhang, et al., Philosophical Magazine, vol, 86, pp.4685-4697 (2006).

Google Scholar

[4] F. Wu, H. Wang, et al., J. Electron. Mater., Volume 42, Issue 5, pp.787-793 (2013).

Google Scholar

[5] H. Wang, F. Wu, et al., J Cryst. Growth, vol. 401, p.423–430 (2014).

Google Scholar

[6] H. Tsuchida, I. Kamata, and M. Nagano, J. Cryst. Growth, vol. 310, 757–765 (2008).

Google Scholar

[7] G. Feng, J. Suda, and T. Kimoto, Applied Physics Letters, vol. 92, 221906 (2008).

Google Scholar

[8] F. Wu, et al., Characterization of V Shaped Defects in 4H-SiC Homoepitaxial Layers, J. Electron. Mater. (in press).

Google Scholar

[9] M. Dudley, S. Byrappa, et al., MRS Proceedings, vol. 1246, 1246-B02-02 (2010).

Google Scholar

[10] M. Dudley, H. Wang, et al., Mater. Sci. Forum, vols. 679-680, pp.269-272, (2011).

Google Scholar

[11] M. Dudley, F. Wu, et al., Appl. Phys. Lett., vol. 98, 232110 (2011).

Google Scholar

[12] F. Wu, H. Wang, et al., MRS Proceedings, vol. 1693, mrss14-1693-dd01-04 (2014).

Google Scholar

[13] F. Wu, H. Wang, et al., Mater. Sci. Forum, vols. 717-720, pp.343-346, (2012).

Google Scholar

[14] P. Krishna, D. Pandey, and C. A. Taylor, Close-packed structures, International Union of Crystallography (1981).

Google Scholar

[15] F. Wu, H. Wang, et al., J. Appl. Phys., vol. 116, 104905 (2014).

Google Scholar

[16] F. Wu, H. Wang, et al., J. Appl. Phys., vol. 116, 169901 (2014).

Google Scholar

[17] St.G. Muller, R.C. Glass, et al., Journal of Crystal Growth, vol. 211, pp.325-332 (2000).

Google Scholar

[18] M. Kanaya, J. Takahashi, Y. Fujiwara, and A. Moritani, Appl. Phys. Lett., vol. 58, p.56 (1991).

Google Scholar

[19] R. Yakimova, M. Syvajarvi, et al., Journal of Crystal Growth, vol. 217, pp.255-262 (2000).

Google Scholar

[20] E.Y. Tupitsyn, A. Arulchakkaravarthi, R.V. Drachev, T.S. Sudarshan, J. Cryst. Growth, vol. 299, p.70–76 (2007).

Google Scholar

[21] F. Wu, H. Wang, et al., Mater. Sci. Forum, vols. 740-742, pp.217-220, (2013).

Google Scholar

[22] N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, and N. Kamiya, J. Cryst. Growth, vol. 191, pp.84-91(1998).

Google Scholar