Fabrication and Compressive Properties of Porous Ti6Al4V Alloy with Elongated Pores for Biomedical Application

Article Preview

Abstract:

Porous Ti6Al4V alloys with anisotropic structure for biomedical application was fabricated by diffusion bonding of titanium alloy meshes. Compressive mechanical compatibility of the alloys is investigated as human bone implants. It is concluded that the fabrication processing for porous Ti6Al4V alloys has better control of the porosity. The pore structure of porous titanium is anisotropic, with elongated and square pores in the out-of-plane and in-plane direction, respectively, which is suited for bone ingrowth. The compressive Young’s modulus and yield stress of porous Ti6Al4V alloy compressed in the out-of-plane direction are 12.2 GPa and 171.4 MPa, respectively, which is compatible with those for the cortical bones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-358

Citation:

Online since:

March 2015

Export:

Price:

[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[2] B.V. Krishna, S. Bose, A. Bandyopadhyay. Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3 (2007) 997-1006.

DOI: 10.1016/j.actbio.2007.03.008

Google Scholar

[3] E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting, J. Mech. Behv. Biomed. 26 (2013) 98-108.

DOI: 10.1016/j.jmbbm.2013.05.011

Google Scholar

[4] F.X. Xie, X.B. He, S.L. Cao, M. Mei, X.H. Qu, Electrochim. Aata. 105 (2013) 121-129.

Google Scholar

[5] S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behv. Biomed. 34 (2014) 106-115.

DOI: 10.1016/j.jmbbm.2014.02.003

Google Scholar

[6] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27 (2006) 2651-2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[7] M. Niinomi, M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, Int. J. Biomater. 2011 (2011) 836587.

DOI: 10.1155/2011/836587

Google Scholar

[8] S.A. Goldstein, The mechanical properties of trabecular bone: Dependence on anatomic location and function, J. Biomech. 20 (1987) 1055-1061.

DOI: 10.1016/0021-9290(87)90023-6

Google Scholar

[9] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8 (2012) 3888-3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[10] M. Abdel-Hady Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, J. Mech. Behv. Biomed. 20 (2013) 407-415.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[11] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26 (2005) 5474-5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[12] B. Levine, A New Era in Porous Metals: Applications in Orthopaedics, Adv. Eng. Mater. 10 (2008) 788-792.

DOI: 10.1002/adem.200800215

Google Scholar

[13] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, Mechanical properties and osteoconductivity of porous bioactive titanium, Biomaterials 26 (2005) 6014-6023.

DOI: 10.1016/j.biomaterials.2005.03.019

Google Scholar

[14] J.P. Li, J.R. de Wijn, C.A. Van Blitterswijk, K. de Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials 27 (2006) 1223-1235.

DOI: 10.1016/j.biomaterials.2005.08.033

Google Scholar

[15] D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomater. 7 (2011).

DOI: 10.1016/j.actbio.2010.09.034

Google Scholar

[16] J.C. Li, D.C. Dunand, Mechanical properties of directionally freeze-cast titanium foams, Acta Mater. 59 (2011) 146-158.

DOI: 10.1016/j.actamat.2010.09.019

Google Scholar

[17] A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, D.K. Pattanayak, T. Matsushita, K. Sasaki, N. Nishida, T. Kokubo, T. Nakamura, Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting, Acta Biomater. (2011).

DOI: 10.1016/j.actbio.2011.01.037

Google Scholar

[18] L.J. Gibson, M.F. Ashby, Cellular Solids, Structure and Properties, 2nd edn., Cambridge University Press, Cambridge, UK, (1997).

Google Scholar

[19] D.J. Jorgensen, D.C. Dunand, Ti–6Al–4V with micro- and macropores produced by powder sintering and electrochemical dissolution of steel wires, Mater. Sci. Eng. A527 (2010) 849-853.

DOI: 10.1016/j.msea.2009.08.034

Google Scholar

[20] D.J. Jorgensen, D.C. Dunand, Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores, Acta Mater. 59 (2011) 640-650.

DOI: 10.1016/j.actamat.2010.09.069

Google Scholar

[21] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomater. 3 (2007) 1007-1018.

DOI: 10.1016/j.actbio.2007.05.009

Google Scholar

[22] F.G. Evans, The mechanical properties of bone, Artif Limbs 13 (1969) 37-48.

Google Scholar