Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs – Challenges and Advances

Article Preview

Abstract:

Silicon has been the semiconductor of choice for microelectronics largely because of the unique properties of its native oxide (SiO2) and the Si/SiO2 interface. For high-temperature and/or high-power applications, however, one needs a semiconductor with a wider energy gap and higher thermal conductivity. Silicon carbide has the right properties and the same native oxide as Si. However, in the late 1990’s it was found that the SiC/SiO2 interface had high interface trap densities, resulting in poor electron mobilities. Annealing in hydrogen, which is key to the quality of Si/SiO2 interfaces, proved ineffective. This paper presents a synthesis of theoretical and experimental work by the authors in the last six years and parallel work in the literature. High-quality SiC/SiO2 interfaces were achieved by annealing in NO gas and monatomic H. The key elements that lead to highquality Si/SiO2 interfaces and low-quality SiC/SiO2 interfaces are identified and the role of N and H treatments is described. More specifically, optimal Si and SiC surfaces for oxidation are identified and the atomic-scale processes of oxidation and resulting interface defects are described. In the case of SiC, we conclude that excess carbon at the SiC/SiO2 interface leads to a bonded Si-C-O interlayer with a mix of fourfold- and threefold-coordinated C and Si atoms. The threefold coordinated atoms are responsible for the high interface trap density and can be eliminated either by H-passivation or replacement by N. Residual Si-Si bonds, which are partially passivated by H and N remain the main limitation. Perspectives for the future for both Si- and SiC-based MOSFETs are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Pages:

935-948

Citation:

Online since:

October 2006

Export:

Price:

[1] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz: Phys. Stat. Sol. (a) Vol. 162 (1997), p.321.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[2] L. A. Lipkin and J. W. Palmour: J. Electron. Mater. Vol. 25 (1996), p.909.

Google Scholar

[3] H. Li, S. Dimitrijev. H. B. Harrison, and D. Sweatman: Appl. Phys. Lett. Vol. 70 (1997), p. (2028).

Google Scholar

[4] S. Dimitrijev, P. Tanner, and H. B. Harrison: Microelectron. Reliab. Vol. 39 (1999), p.441.

Google Scholar

[5] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller: Appl. Phys. Lett. Vol. 76 (2000), p.1713.

DOI: 10.1063/1.126167

Google Scholar

[6] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour: IEEE ED Lett. Vol. 22 (2001), p.176.

DOI: 10.1109/55.915604

Google Scholar

[7] G. Y. Chung, J. R. Williams, T. Isaacs-Smith, F. Ren, K. McDonald, and L. C. Feldman: Appl. Phys. Lett. Vol. 81 (2002), p.4266.

Google Scholar

[8] V. V. Afasanev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong, and S. Dimitrijev: Appl. Phys. Lett. Vol. 82 (2003), p.568.

DOI: 10.1063/1.1532103

Google Scholar

[9] S. Dhar, Y. W. Song, L. C. Feldman, T. Isaacs-Smith, C. C. Tin, J. R. Williams, G. Chung, T. Nishimura, D. Starodub, T. Gustafson, and E. Garfunkel: Appl. Phys. Lett. Vol. 84 (2004), p.1498.

DOI: 10.1063/1.1651325

Google Scholar

[10] S. Dhar, S. R. Wang, J. R. Williams, S. T. Pantelides, and L. C. Feldman: MRS Bulletin Vol. 30 (2005), p.288.

Google Scholar

[11] V. V. Afanasev and A. Stesmans: Phys. Rev. Lett. Vol. 80 (1998), p.5176.

Google Scholar

[12] K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai: Appl. Phys. Lett. Vol. 76 (2000), p.1585.

Google Scholar

[13] V. V. Afanasev, A. Stesmans, M. Bassler, G Pensl, and M. J. Schulz: Appl. Phys. Lett. Vol. 78 (2001), p.4048.

Google Scholar

[14] S. Dhar, S. Wang, A.C. Ahyi, T. Isaacs-Smith, S. T. Pantelides, J. R. Williams, and L.C. Feldman: these Proceedings.

Google Scholar

[15] M. Di Ventra and S. T. Pantelides: Phys. Rev. Lett. Vol. 83 (1999), p.1624.

Google Scholar

[16] S. Wang, M. Di Venra, S. G. Kim, and S. T. Pantelides: Phys. Rev. Lett. Vol. 86 (2001), p.5946.

Google Scholar

[17] R. Buczko, S. Pennycook, and S. T. Pantelides: Phys. Rev. Lett., Vol. 84 (2000), p.943.

Google Scholar

[18] S. T. Pantelides et al.: Mater. Sci. Forum Vol. 338-342 (2000), p.1133.

Google Scholar

[19] S. T. Pantelides et al. in Silicon Carbide-Materials, ed. A.K. Agarwal et al.: MRS Symp. Proc. Vol. 640 (2001), p. H3. 3. 1.

Google Scholar

[20] P. Deák, A. Gali, J. Knaup, Z. Hajnal, T. Frauenheim, P. Ordejon, and W. J. Choyke: Physica B, Vol. 340-342 (2003), p.1069.

DOI: 10.1016/j.physb.2003.09.252

Google Scholar

[21] J. Knaup, P. Deák, Th. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke: Phys. Rev. B Vol. 71 (2005), p.235321; Phys. Rev. B Vol. 72 (2005), p.115323.

Google Scholar

[22] S. T. Pantelides and M. Long, in The Physics of SiO2 and Its Interfaces, ed. by S. T. Pantelides (Pergamon Press, Elmsford, N.Y., 1978), pp.339-343.

DOI: 10.1016/b978-0-08-023049-8.50063-4

Google Scholar

[23] P. M. Fahey, P. B. Griffin, and J. D. Plummer: Rev. Mod. Phys. Vol. 61 (1989), p.289.

Google Scholar

[24] F. J. Himpsel et al.: Phys. Rev. B Vol. 38 (1988), p.6084.

Google Scholar

[25] J. H. Stathis and S. T. Pantelides: Phys. Rev. B Vol. 37 (1988), p.6579.

Google Scholar

[26] A. Bongiorno, A. Pasquarello, M. S. Hybertsen, and L. C. Feldman: Phys. Rev. Lett. Vol. 90 (2003), p.186101.

Google Scholar

[27] S. T. Pantelides and W. A. Harrison: Phys. Rev. B Vol. 11 (1975), p.3006.

Google Scholar

[28] The physics of hydrogenated amorphous silicon I, edited by J. D. Joannopoulos and G. Lucovsky (Springer-Verlag, Berlin, 1984).

Google Scholar

[29] Zhong-Yi Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides: Phys. Rev. Lett. Vol. 89 (2002) 285505.

Google Scholar

[30] D. M. Fleetwood et al.: J. Appl. Phys. Vol. 73 (1993), p.5058.

Google Scholar

[31] D. M. Fleetwood et al.: Appl. Phys. Lett. Vol. 64 (1994), p. (1965).

Google Scholar

[32] S. T. Pantelides, S. N. Rashkeev, R. Buczko, D. M. Fleetwood, and R. D. Schrimpf: IEEE Trans. Nucl. Sci. Vol. 47 (2000), p.2262.

DOI: 10.1109/23.903763

Google Scholar

[33] S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, Phys. Rev. Lett. Vol. 87 (2001), p.165506.

Google Scholar

[34] D. M. Fleetwood: Microel. Reliab. Vol. 42 (2002), p.523.

Google Scholar

[35] A. P. Karmarkar, B. K. Choi, R. D. Schrimpf, and D.M. Fleetwood: IEEE Trans. Nucl. Sci. Vol. 48 (2001), p.2158.

Google Scholar

[36] M. P. Rodgers, D. M. Fleetwood, R. D. Schrimpf, I. G. Batyrev, S. Wang, and S. T. Pantelides: IEEE. Trans. Nucl. Sci. Vol. 52 (2006), p.2642.

DOI: 10.1109/tns.2005.861079

Google Scholar

[37] B. Hornetz et al.: J. Mat. Res. Vol. 9 (1994).

Google Scholar

[38] K. -C. Chang, L. M. Porter, J. Bentley, C. -Y. Lu, and J. A. Cooper, Jr.,: J. Appl. Phys. Vol. 95 (2004), p.8252.

Google Scholar

[39] P. J. MacFarlane and M. E. Zvanut: Microelectron. Engin. Vol. 48 (1999), p.269.

Google Scholar

[40] J. L. Cantin, H. J. von Bardeleben, Y. Shishkin, Y. Ke, R. P, Devaty, and W. J. Choyke: Phys. Rev. Lett. Vol. 92 (2004), p.015502.

Google Scholar

[41] D. J. Meyer, N. A. Bohna, P. M. Lenahan, and A. J. Lelis: Appl. Phys. Lett. Vol. 84 (2004), p.3406.

Google Scholar

[42] M. V. Fischetti, F. Gámiz, and W. Hänsch: J. Appl. Phys. Vol. 92 (2002), p.7320.

Google Scholar

[43] M. H. Evans, X-G. Zhang, J. D. Joannopoulos, and S. T. Pantelides: Phys. Rev. Lett. Vol. 95 (2005), p.106802.

Google Scholar

[44] M. H. Evans, M. Causanel, R. D. Schrimpf, and S. T. Pantelides: IEEE Trans. ED, in press.

Google Scholar

[45] K. van Benthem, A. R. Lupini, M. Kim, H. S. Baik, S. J. Doh, J. -H. Lee, M. P. Oxley, S. D. Findlay, L. T. Allen, J. T. Luck, and S. J. Pennycook: Appl. Phys. Lett. Vol. 87 (2005), p.034104.

DOI: 10.1063/1.1991989

Google Scholar

[46] G. Gudjonsson et al.: IEEE Trans. Electr. Dev. Vol. 26 (2005).

Google Scholar