Open Core Dislocations and Surface Energy of SiC

Article Preview

Abstract:

More than fifty years ago Frank proposed that a dislocation with a Burgers vector larger than a critical value would have an open core. Since then, there has been controversy as to whether micropipes in SiC are examples of open core screw dislocations. In this work open core dislocations in 4H-SiC material are investigated by AFM. The results are interpreted on the basis of Frank’s theory and the surface energy of SiC is estimated from the critical value of Burgers vector. Finally, the extracted surface energy is compared with the results of other research.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Pages:

439-442

Citation:

Online since:

October 2006

Export:

Price:

[1] J. A. Powell, P. G. Neudeck, D. Larkin, J. Yang, and P. Pirouz: Inst. Phys. Conf. Ser. Vol. 137 (1993), p.161.

Google Scholar

[2] Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio, and R. Martinez: Appl. Phys. Lett. Vol. 76 (2000), p.2725.

DOI: 10.1063/1.126456

Google Scholar

[3] P. G. Neudeck and J. A. Powell: IEEE Electron Device Lett. Vol. 15 (1994), p.63.

Google Scholar

[4] J. Heindl, H.P. Strunk, V.D. Heydemann, and G. Pensl: Phys. Stat. Sol. A, Vol. 162 (1997), p.251.

DOI: 10.1002/1521-396x(199707)162:1<251::aid-pssa251>3.0.co;2-7

Google Scholar

[5] H. McD. Hobgood, M. F. Brady, M. R. Calus , J. R. Jenny, R. T. Leonard, D. P. Malta, St. G. Müller, A. R. Powell, V. F. Tsvetkov, R. C. Glass, and C. H. Carter: Mater. Sci. Forum Vols. 457-460 (2004), p.3.

DOI: 10.4028/www.scientific.net/msf.457-460.3

Google Scholar

[6] F.C. Frank: Acta. Crystallogr. Vol. 4 (1951), p.497.

Google Scholar

[7] M. Dudley, W. Si, S. Wang, C. Carter, Jr., R. Glass, and V. Tsvetkov: Nuovo Cimento Soc. Ital. Fis., D. Vol. 19D (1997), p.153.

Google Scholar

[8] P. Krishna, S. -S. Jiang, and A. R. Lang: J. Cryst. Growth, Vol. 71 (1985), p.41.

Google Scholar

[9] I. Sunagawa and P. Bennema: J. Cryst. Growth, Vol. 53 (1981), p.490.

Google Scholar

[10] J. Heindl, W. Dorsch, R. Eckstein, D. Hofmann, T. Marek, St. G. Müller, H. P. Strunk, and A. Winnacker: J. Cryst. Growth, Vol. 179 (1997), p.510.

DOI: 10.1016/s0022-0248(97)00142-5

Google Scholar

[11] B. Van Der Hoek, J. P. Van Der Eerden, and P. Bennema: J. Cryst. Growth, Vol. 56 (1982), p.108.

Google Scholar

[12] J. Giocondi, G. S. Rohrer, M. Skowronski, V. Balakrishna, G. Augustine, H. M. Hobgood, and R. H. Hopkins: Mater. Res. Soc. Symp. Proc. Vol. 423 (1996), p.539.

DOI: 10.1557/proc-423-539

Google Scholar

[13] H. Tanaka, Y. Uemura, and J. Inomata: J. Cryst. Growth, Vol. 53 (1981), p.630.

Google Scholar

[14] J. Heindl, W. Dorsch, H. P. Strunk, St. G. Müller, R. Eckstein, D. Hofmann, and A. Winnacker: Phys. Rev. Lett. Vol. 80 (1998), p.740.

DOI: 10.1103/physrevlett.80.740

Google Scholar

[15] H. Ohsato, T. Kato and T. Okuda: Mat. Sci. Semicon. Proc. Vol. 4 (2001), p.483.

Google Scholar

[16] X. R. Huang, M. Dudley, W. M. Vetter, W. Huang, S. Wang, and C. H. Carter, Jr.: Appl. Phys. Lett. Vol. 74 (1999), p.353.

Google Scholar

[17] W. M. Vetter and M. Dudley: J. Appl. Phys. Vol. 96 (2004), p.348.

Google Scholar

[18] P. Pirouz: Phil. Mag. A, Vol. 78 (1998), p.727.

Google Scholar

[19] D. I. Cherednichenko, Y. I. Khlebnikov, I. I. Khlebnikov, R. V. Drachev and T. S. Sudarshan: J. Appl. Phys. Vol. 89, (2001), p.4139.

Google Scholar

[20] D. Du and D. J. Srolovitz: Acta Materialia, Vol. 52 (2004), p.3365.

Google Scholar