Locating Point of Impact on an Anisotropic Cylindrical Surface Using Acoustic Beamforming Technique

Article Preview

Abstract:

A beamforming array technique with four sensors is applied to a cylindrical geometry for detecting point of impact. A linear array of acoustic sensors attached to the plate record the waveforms of Lamb waves generated at the impact point with individual time delay. A beamforming technique in conjunction with an optimization scheme that incorporates the direction dependent guided Lamb wave speed in cylindrical plates is developed. The optimization is carried out using the experimentally obtained wave speed as a function of propagation direction. The maximum value in the beamforming plot corresponds to the predicted point of impact. The proposed technique is experimentally verified by comparing the predicted points with the exact points of impact on a cylindrical aluminum plate and a cylindrical composite shell. For randomly chosen points of impact the beamforming technique successfully predicts the location of the acoustic source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-340

Citation:

Online since:

June 2013

Export:

Price:

[1] A.K. Mal, F. Shih, S. Banerjee, Acoustic Emission Waveforms in Composite Laminates under Low Velocity Impact, Proc. SPIE 5047 (2003) 1-12.

DOI: 10.1117/12.484448

Google Scholar

[2] A.K. Mal, F. Ricci, S. Gibson, S. Banerjee, Damage Detection in Structures from Vibration and Wave Propagation Data, Proc. SPIE 5047 (2003) 202-210.

DOI: 10.1117/12.484449

Google Scholar

[3] T. Kundu, S. Das, K.V. Jata, Point of Impact Prediction in Isotropic and Anisotropic Plates from the Acoustic Emission Data, Journal of the Acoustical Society of America 122 (4) (2007) 2057-2066.

DOI: 10.1121/1.2775322

Google Scholar

[4] T. Kundu, S. Das, K.V. Jata, An Improved Technique for Locating the Point of Impact from the Acoustic Emission Data, Proc. SPIE 6532 (2007) OM 1-12.

DOI: 10.1117/12.730228

Google Scholar

[5] T. Kundu, S. Das, K.V. Jata, Point of Impact Prediction in Anisotropic Fiber Reinforced Composite Plates from the Acoustic Emission Data, Review of Progress in Quantitative Nondestructive Evaluation (Pub. Am. Inst. of Physics) 27 (2007) 1405-1412.

DOI: 10.1063/1.2902600

Google Scholar

[6] T. Kundu, S. Das, S.A. Martin, K.V. Jata, Locating point of impact in anisotropic fiber reinforced composite plates, Ultrasonics 48(3) (2008) 193-201.

DOI: 10.1016/j.ultras.2007.12.001

Google Scholar

[7] T. Hajzargarbashi, T. Kundu, S. Bland, A New Algorithm for Detecting Impact Point in Anisotropic Plates by the Acoustic Emission Technique, Proc. SPIE 7650 (2010) 7650C.

DOI: 10.1117/12.847246

Google Scholar

[8] T. Hajzargarbashi, T. Kundu, S. Bland, An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates, Ultrasonics 51 (2011) 317-324.

DOI: 10.1016/j.ultras.2010.10.005

Google Scholar

[9] T. Hajzargarbashi, H. Nakatani, T. Kundu, N. Takeda, Detecting the Point of Impact on a Cylindrical Plate by the Acoustic Emission Technique, Proc. SPIE 7981 (2011) 79810U.

DOI: 10.1117/12.881199

Google Scholar

[10] T. Hajzargarbashi, H. Nakatani, T. Kundu, N. Takeda, Detecting the Point of Impact on an Anisotropic Cylindrical Surface using only Four Acoustic Sensors, Proc. The 8th International Workshop on Structural Health Monitoring (Stanford, CA, September 13-15, 2011) 562-569.

DOI: 10.4028/www.scientific.net/kem.558.331

Google Scholar

[11] G.C. McLaskey, S.D. Glaser, C.U. Grosse, Beamforming array techniques for acoustic emission monitoring of large concrete structures, Journal of Sound and Vibration 329 (2010) 2384-2394.

DOI: 10.1016/j.jsv.2009.08.037

Google Scholar

[12] T. He, Q. Pan, Y. Liu, X. Liu, D. Hu, Near-field beamforming analysis for acoustic emission source localization, Ultrasonics 52(5) (2012) 587-592.

DOI: 10.1016/j.ultras.2011.12.003

Google Scholar

[13] J. Yang, W.S. Gan, K.S. Tan, M.H. Er, Acoustic beamforming of a parametric speaker comprising ultrasonic transducers, Sensors and Actuators A: Physical 125 (2005) 91-99.

DOI: 10.1016/j.sna.2005.04.037

Google Scholar

[14] K. Ito, M. Enoki, Acquisition and Analysis of Continuous Acoustic Emission Waveform for Classification of Damage Sources in Ceramic Fiber Mat, Materials Transactions 48 (2007) 1221-1226.

DOI: 10.2320/matertrans.i-mra2007850

Google Scholar