The Roles of Specific Residues on ERK2 for Nuclear Translocation in Response to Nerve Growth Factors in PC12 Cells

Article Preview

Abstract:

Extracellular signal-regulated kinases (ERKs) are phosphorylated on threonine and tyrosine residues at 183 and 185, respectively, and then translocated from cytosol to nucleus. ERK2 is retained in the nucleus for several hours by nerve growth factor (NGF), and this sustained retention of ERK2 in the nucleus has effect on the fate of biological response toward differentiation by neurite outgrowth in PC12 cells. The overexpression of Green Fluorescent Protein (GFP)-ERK2 and mutated GFP-ERK2 constructs without anchoring protein MEK1 were distributed throughout the resting and the activated cells. When GFP-ERK2 coexpressed along with MEK1, cytosolic localization of GFP-ERK2 is retained by MEK1 in the resting PC12 cells. This cytosolic retention was due to the binding of ERK2 to the MEK1. Upon stimulation by growth factors, the association between GFP-ERK2 and MEK1 was detached from each other, and then GFP-ERK2 was translocated into the nucleus. However, inactive form of the MKP-3 cytosolic phosphatase forced ERK cytosolic retention in PC12 cells were either left untreated or stimulated by NGF. When the transfected PC12 cells were treated for 72hrs with NGF, GFP-ERK2 was distributed the cytosol. Regarding its subcellular localization, the roles of residues 179-185 located in the activation loop of ERK2 were examined. The substitution of residues in the activation loop to alanine showed different localization on the nuclear translocation of ERK2 in PC12 cells.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Pages:

162-170

Citation:

Online since:

January 2005

Export:

Price:

[1] C.E. Chandler and H.R. Herschman: J. Cell Physiol. Vol. 105 (1980), p.275.

Google Scholar

[2] K. Huff, D. End and G. Guroff: J. Cell Biol. Vol. 88(1981), p.189.

Google Scholar

[3] J. Schlessinger: Cell Vol. 103 (2000), p.211.

Google Scholar

[4] M.E. Greenberg, L.A. Greene and E.B. Ziff: J. Biol. Chem. Vol. 260 (1958), p.14101.

Google Scholar

[5] P.A. Maher: Proc. Natl. Acad. Sci. USA Vol. 85 (1988), p.6788.

Google Scholar

[6] A.W. Whitehurst, J.L. Wilsbacher, Y. You, K. Luby-Phelps, M.S. Moore and M.H. Cobb: Proc. Natl. Acad. Sci. USA Vol. Vol. 99 (2002), p.7496.

DOI: 10.1073/pnas.112495999

Google Scholar

[7] S. Traverse, N. Gomez, H. Paterson, M.H. Cobb and P. Cohen: Biochem. J. Vol. 288 (1992), p.351.

Google Scholar

[8] T.T. Nguyen, J.C. Scimeca, C. Filloux, P. Peraldi, J.L. Carpentier and E. van Obberghen: J. Biol. Chem. Vol. 268, p.9803.

Google Scholar

[9] C.J. Marshall: Cell Vol. 80 (1995), p.179.

Google Scholar

[10] J. Pouyssegur, V. Volmat and P. Lenormand: Biochem. Pharmacol. Vol. 64 (2002), p.755.

Google Scholar

[11] P. Lenormand, C. Sardet, G. Pages, G. L'Allemain, A. Brunet and J. Pouyssegur: J. Cell Biol. Vol. 122 (1993), p.1079.

Google Scholar

[12] V. Volmat and J. Pouyssegur: J. Biol. Cell Vol. 93 (2001), p.71.

Google Scholar

[13] M. Fukuda, Y. Gotoh and E. Nishida: EMBO J. Vol. 16 (1997), p. (1901).

Google Scholar

[14] M. Fukuda, I. Gotoh, M. Adachi, Y. Gotoh and E. Nishida: J. Biol. Chem. Vol. 272 (1997), p.32642.

Google Scholar

[15] H. Rubinfeld, T. Hanoch and R. Seger: J. Biol. Chem. Vol. 274 (1999), p.30349.

Google Scholar

[16] A.A. Reszka, R. Seger, C.D. Diltz, E.G. Krebs and E.H. Fischer: Proc. Natl. Acad. Sci. USA Vol. 92 (1995), p.8881.

DOI: 10.1073/pnas.92.19.8881

Google Scholar

[17] C. Blanco-Aparicio, J. Torres and R. Pulido: J. Cell Biol. Vol. 147 (1999), p.1129.

Google Scholar

[18] T. Tanoue, M. Adachi, T. Moriguchi and E. Nishida: Nature Cell Biol. Vol. 2 (2000), p.110.

Google Scholar

[19] A. Brunet, D. Roux, P. Lenormand, S. Dowd, S. Keyse and J. Pouyssegur: EMBO J. Vol. 18 (1999), p.664.

Google Scholar

[20] M.S. Qui and S.H. Green: Neuron Vol. 9 (1992), p.705.

Google Scholar

[21] M. Adachi, M. Fukuda and E. Nishida: J. Cell Biol. Vol. 148 (2000), p.849.

Google Scholar

[22] P. Lenormand, J.M. Brondello, A. Brunet and J. Pouyssegur: J. Cell Biol. Vol. 142, (1998), p.625. Title of Publication (to be inserted by the publisher).

Google Scholar

[23] C. -F. Zheng and K.L. Guan: J. Biol. Chem. Vol. 269 (1994), p.19947.

Google Scholar

[24] S.M. Keyse: Semin. Cell Dev. Biol. Vol. 9 (1998), p.143.

Google Scholar

[25] L.A. Groom, A.A. Sneddon, D.R. Alessi, S. Dowd and S.M. Keyse: EMBO J. Vol. 15 (1996), p.101.

Google Scholar

[26] M. Muda, U. Boschert, R. Dickinson, J. -C. Martinou, I. Martinou, M. Camps, W. Schlegel and S. Arkinstall: J. Biol. Chem. Vol. 271 (1996), p.4319.

DOI: 10.1074/jbc.271.8.4319

Google Scholar

[27] I. Wolf, H. Rubinfeld, S. Yoon, G. Marmor, T. Hanoch and R. Seger: J. Biol. Chem. Vol. 276 (2001), p.24490.

DOI: 10.1074/jbc.m103352200

Google Scholar

[28] H. Jaaro, H. Rubinfeld, T. Hanoch and R. Seger: Proc. Natl. Acad. Sci. USA Vol. 94 (1997), p.3742.

DOI: 10.1073/pnas.94.8.3742

Google Scholar

[29] T.H. Chen, C. Sarnecki and J. Blenis: Mol. Cell Biol. Vol. 12 (1992), p.915.

Google Scholar

[30] A.M. Horgan and P.J. Stork: Exp. Cell Res. Vol. 285 (2003), p.208.

Google Scholar

[31] M. Fukuda, I. Gotoh, Y. Gotoh and E. Nishida: J. Biol. Chem. Vol. 271 (1996), 20024.

Google Scholar

[32] R.S. Foire, V.E. Bayer, S.L. Pelech, J. Posada, J.A. Cooper and J.M. Baraban: Neuroscience Vol. 55 (1993), p.463.

Google Scholar

[33] M.J. Robinson, S.A. Stippec, E. Goldsmith, M.A. White and M.H. Cobb: Curr. Biol. Vol. 8 (1998), p.1141.

Google Scholar