CdTe/PbTe Superlattice Modeling and Fabrication for Solar Cells Applications

Article Preview

Abstract:

Tuning the bandgap of superlattice structures creates devices with unique optical, electronic and mechanical properties. Designing solar cells with superlattice structures increases the range of light energy absorbed from the solar spectrum in the device. A superlattice is a nanostructure composed of alternating thin layers of two materials. The thickness of the constituent materials alters the optical bandgap of the superlattice. This paper discusses a mathematical model which computes the effective bandgap of a CdTe/PbTe superlattice based on a given thickness of the CdTe and PbTe films. The output of this model is verified by fabricating superlattices with different thickness and measuring their effective bandgaps. The electrochemical atomic layer deposition method is used to fabricate the superlattice structures. The advantage of this method over other vacuum techniques is that it is inexpensive and operates at room temperature. This paper also discusses a method to mitigate the lattice mismatch between the substrate and the superlattice. The optical bandgaps, crystallinity, grain size and chemical composition of the structures are measured using a spectrometer, diffractometer, transmission electron microscope and scanning electron microscope, respectively. The bandgaps of the fabricated superlattices were in agreement with the simulated values. This model can be used for designing the bandgaps of superlattices which can be incorporated in solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-137

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] J. Klos and M. Krawczyk. (2009, Dec. ) Electronic and hole spectra of layered systems of cylindrical rod arrays: solar cell application. J. Appl. Phys. [Online].

Google Scholar

[2] P. K. Bhattacharya, Strained Layered Superlattices, in Properties of III-V Quantum Wells and Superlattices, 1st ed. Stevanage, United Kingdom: Short Run Press, 1996, pp.26-29.

Google Scholar

[3] G. Aruldhas, P. Rajagoral Band Theory of Solids, in Modern Physics, 1st ed., New Delhi: Prentice Hall of India, New Delhi, 2006, pp.106-108.

Google Scholar

[4] D. J. Aiken and A. M. Barnett, A device structure for thin, light trapped epitaxial silicon solar cells, in IEEE Photovoltaic Specialist Conference 1996: Proceedings of the 25th IEEE Photovoltaic Specialist Conferences, Washington D.C., USA, May 13-17 1996, pp.685-688.

DOI: 10.1109/pvsc.1996.564222

Google Scholar

[5] A. Ueta, E. Abramof, C. Boschetti, H. Closs, P. Motisuke, P. Rappl, and I. Banderia, Experimental observation of band inversion in the PbSnTe system, Microelectron J., vol. 4, p.331, (2002).

DOI: 10.1063/1.371815

Google Scholar

[6] P. Mirkarimi, S. Barnetta, K. Hubbarda, R. Jervis and L. Hultman, Structure and mechanical properties of epitaxial TiN/V0. 3Nb0. 7N(100) superlattices, J Mater Res, vol. 9, p.1456, (1994).

DOI: 10.1557/jmr.1994.1456

Google Scholar

[7] J. Yoshino, H. Munekata, L. Chang, Growth of PbTe/CdTe on GaAs(100), Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 5, p.683 – 685, (1987).

DOI: 10.1116/1.583804

Google Scholar

[8] K. Koike, T. Honden, I. Makabe, F. Ping Yan and M. Yano. PbTe/CdTe single quantum wells grown on GaAs substrates by molecular beam epitaxy, Journal of Crystal Growth, vol. 257, pp.212-217, (2003).

DOI: 10.1016/s0022-0248(03)01465-9

Google Scholar

[9] K. Koike, T. Honden, I. Makabe, F. Ping Yan and M. Yano. Photoluminescence characterization of PbTe/CdTe quantum dots grown by lattice-type mismatched epitaxy, Journal of Crystal Growth, vol. 301, pp.722-725, (2007).

DOI: 10.1016/j.jcrysgro.2006.11.115

Google Scholar

[10] J. Xiong, Y. Xu, S. Zheng, F. Zhao, J. Song, and G. Fan, Advantages of GaN based light – emitting diodes with p-AlGaN/InGaN superlattice last quantum barrier, Opt Commun, vol. 312, p.85 – 88, (2014).

DOI: 10.1016/j.optcom.2013.08.053

Google Scholar

[11] A. Rothwarf, A. Varonides, Superlattice contact layers for high open circuit voltage a-Si: H solar cells, IEEE Photovoltaic Specialists Conference: Proceeding of the 21st IEEE Photovoltaic Specialists Conference  , vol. 2, pp.21-25, (1990).

DOI: 10.1109/pvsc.1990.111869

Google Scholar

[12] Y. Ren, Y. Dai, B, Zhang, D. Xue, Tunable Magnetic Properties of Hetrogeneous Nanobrush, Nanoscale Res. Lett, vol. 5, p.853 – 858, (2010).

DOI: 10.1007/s11671-010-9574-5

Google Scholar

[13] J. L. Stickney, Electrochemical Atomic Layer Epitaxy (EC-ALE): Nanoscale Control in the Electrodeposition of Compound Semiconductors, in Advances in Electrochemical Science and Engineering, 1st ed, vol. 7, R. Alkire, D. Kolb, Wiley, 2001, pp.1-105.

DOI: 10.1002/3527600264.ch1

Google Scholar

[14] C. Kittel, Energy Bands, in Introduction to Solid State Physics, 8th ed., John Wiley and Sons, New Jersey, 1976 pp.25-30.

Google Scholar

[15] J.P. Srivastava, Electron Energy Bands, Elements Of Solid State Physics, 1st ed., Prentice-Hall of India, New Delhi, 2005, pp.91-93.

Google Scholar

[16] A. Kabalan, S. Jain, P. Singh Analysis and fabrication of submicron PbT/ZnTe thin films for superlattice structured solar cells, 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 2010, pp.1814-1818.

DOI: 10.1109/pvsc.2010.5615925

Google Scholar

[17] P. Singh, A. Kabalan, Electrochemical atomic layer deposition of a CdTe/PbTe superlattice for the absorber layer of a solar cell, 38th IEEE Proceedings of the Photovoltaic Spec. Conf., Austin, TX, 2012, pp.2548-2552.

DOI: 10.1109/pvsc.2012.6318114

Google Scholar

[18] J.I. Pankove, Relationship between optical constants, in Optical Processes in Semiconductors, 1st ed., Dover Publications, New York, 1975, pp.98-101.

Google Scholar

[19] K. Sattler, Types of nanoparticles, Handbook of Nanophysics: Nanoparticles and Quantum Dots, CRC Press, Boca Raton, FL, 2011, p.716.

Google Scholar

[20] J. Stickney, D. Banga, PbSe ∕ PbTe Superlattice Formation via E-ALD , J. Electrochem. Soc. , vol. 158, issue 2, pp. D99-D106, (2011).

DOI: 10.1149/1.3521463

Google Scholar

[21] S. N. Dahal, S. P. Bremner, and C. B. Honsberg, Identification of candidate material systems for quantum dot solar cells including th effect of strain, Progress in Photovoltaics, vol. 18, issue 4, pp.233-239, (2010).

DOI: 10.1002/pip.937

Google Scholar

[22] V. K. Patel, Lattice Constants, Thermal Expansion Coefficients, Densities, and Imperfections in Gold, Gold Alloys, Rolla, Missouri, pp.150-158, (1967).

Google Scholar

[23] S. B. Freund, Thermal barrier coatings, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, Cambridge, UK, pp.13-15, (2003).

Google Scholar

[24] R. Vaidyanathan, S. M. Cox, U. Happek, D. Banga, M. K. Mathe, and J. L. Stickney, Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD)., Langmuir, vol. 22, pp.10590-10595, (2006).

DOI: 10.1021/la061625z

Google Scholar

[25] B. K Agarwal, Scattering of X-rays, in X-ray Spectroscopy, 2nd edition, Springer-verlag, Allahabad, India, pp.195-200, (1991).

Google Scholar

[26] M. Polyanskiy. (2008). Refractive Index Database. [Online]. Available: www. refractiveindexdatabase. com.

Google Scholar

[27] P. Bhattacharya, Optical Process in Semiconductor, in Semiconductor Optoelectronics Devices, New Delhi: Prentice Hall of India, (2004).

Google Scholar

[28] C.B. Honsberg, S.P. Bremner, Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method, Progress in Photovoltaics: Research and Applications, vol. 16, p.225 – 233, (2007).

DOI: 10.1002/pip.799

Google Scholar